
B. Comp. Dissertation

Fast Splitting Algorithms for Noisy

and Sparsity-Constrained Group Testing

By

Tan Thong Cai, Nelvin

Department of Computer Science

School of Computing

National University of Singapore

2020/2021 Semester 2

B. Comp. Dissertation

Fast Splitting Algorithms for Noisy

and Sparsity-Constrained Group Testing

By

Tan Thong Cai, Nelvin

Department of Computer Science

School of Computing

National University of Singapore

2020/2021 Semester 2

Project No: H240070
Advisor: Asst. Prof. Jonathan Scarlett
Deliverables:

Report: 1 Volume

Abstract

In group testing, the goal is to identify a subset of defective items within a larger set of items
based on tests whose outcomes indicate whether at least one defective item is present. This
problem is relevant in areas such as medical testing, DNA sequencing, communication protocols,
and many more. In this report, we study (i) a noisy version of the problem, where each test
outcome is independently flipped with some constant probability, and (ii) a sparsity-constrained
version of the problem, in which the testing procedure is subjected to one of the following two
constraints: items are finitely divisible and thus may participate in at most γ tests; or tests are
size-constrained to pool no more than ρ items per test. Under each of these settings, considering
the for-each recovery guarantee with asymptotically vanishing error probability, we introduce
a fast splitting algorithm and establish its near-optimality not only in terms of the number
of tests, but also in terms of the decoding time. While the most basic formulations of our
algorithms require Ω(n) storage for each algorithm, we also provide low-storage variants based
on hashing, with similar recovery guarantees.

Subject Descriptors:
E.4 Coding and Information Theory
F.2 Analysis of Algorithms and Problem Complexity
G.3 Probability and Statistics
G.2 Discrete Mathematics

Keywords:
Group Testing, sparsity, sublinear-time decoding

Implementation Software and Hardware:
R

Acknowledgement

I am deeply indebted to my supervisor Prof. Jonathan Scarlett for advising me on this project.

He is very supportive and patient with me during the entire course of this research (and in fact,

for most of my undergraduate years). Under his guidance, I learnt a great deal about numerous

aspects of academic research. It has truly been a great pleasure to study and research under

him, and I could not have asked for a better role model, teacher, and supervisor.

I would also like to extend my gratitude to the amazing teachers who have helped devel-

oped my foundations in Computer Science and Statistics. In particular, I would like to thank

Prof. Kim Cuc (Daisy) Pham and Prof. Wanjie Wang for their superb teaching and advice.

Thanks should also go to my bright and motivated friends who have supported me along

the way, especially Andrew Tan, Sean Ng, Gary Goh, Nicholas Teh, Kang Tze Ng, Heng Guang

Lim, Sebastian Lie, Kenneth Goh, and Yanxun Wang for stimulating discussions and a source

of encouragement.

Lastly, my deepest gratitude goes to my family for their omnipresent warmth and support.

List of Figures

2.1 Tree structure of our algorithm for the noisy setting. 10
2.2 In the case of l ≤ log2 n− r (i.e., there are at least r levels below the node), the

diagram on the left shows an example of a length-r path. Otherwise, we have
l > log2 n− r (i.e., there are less than r levels below the node), and the diagram
on the right shows an example of a length-r path. 11

3.1 Tree structure of our algorithm. From the second level onwards, the branching

factor is M
1

γ′−1 . 22
3.2 Plot of the asymptotic quantity η (see (3.6)) against the sparsity parameter θ

for the converse (i.e., the lower bound) [1], the DD algorithm [1], the COMP
algorithm [2], and our splitting algorithm (with γ = 4 and γ = 10). 25

4.1 Tree structure of our algorithm. From the second level onwards, the branching
factor is ρ1/C . 33

iv

List of Tables

1.1 Overview of existing noisy non-adaptive group testing results under the for-each
guarantee. A construction is said to be explicit if its test matrix can be computed
deterministically in polynomial time, and in the final row, ε is an arbitrarily small
positive constant. 5

1.2 Overview of existing noiseless non-adaptive group testing results for non-adaptive
sparsity-constrained group testing under the for-each guarantee. For entries con-
taining Õ(·) notation, the results correspond to 1

poly(logn) error probability, but
more general variants are also available. A construction is said to be explicit if
its test matrix can be computed deterministically in polynomial time; the results
shown for explicit constructions additionally require k = O(

√
n). 7

v

Table of Contents

Title i

Abstract ii

Acknowledgement iii

List of Figures iv

List of Tables v

1 Introduction 1
1.1 Problem Setup . 2

1.1.1 Noisy Setting . 3
1.1.2 Sparsity-Constrained Setting . 3

1.2 Related Work . 5
1.3 Summary of Results . 6

2 Algorithm for the Noisy Setting 9
2.1 Description of the Algorithm . 9
2.2 Algorithmic Guarantees . 11
2.3 Analysis . 12

2.3.1 Analysis of Levels l = log2 k, . . . , log2 n− 1 12
2.3.2 Analysis of the Final Level . 16
2.3.3 Number of Tests, Error Probability, and Decoding Time 16

3 Algorithm for Finitely Divisible Items 20
3.1 Description of the Algorithm . 21
3.2 Algorithmic Guarantees . 21
3.3 Analysis . 24

3.3.1 Bounding Ntotal . 26
3.3.2 Analysis of the Final Level . 29
3.3.3 Number of Tests, Error Probability, and Decoding Time 30

4 Algorithm for Size-Constrained Tests 31
4.1 Description of the Algorithm . 32
4.2 Algorithmic Guarantees . 32
4.3 Analysis . 33

4.3.1 Analysis of Levels l = 1, . . . , C − 1 . 36
4.3.2 Analysis of the Final Level . 37
4.3.3 Number of Tests, Error Probability, and Decoding Time 38

vi

5 Storage Reductions via Hashing 39
5.1 Noisy Setting . 39

5.1.1 Algorithmic Guarantees . 39
5.1.2 Outline of Analysis . 40

5.2 Finitely Divisible Items . 41
5.2.1 Algorithmic Guarantees . 41
5.2.2 Analysis . 42

5.3 Size-Constrained Tests . 49
5.3.1 Algorithmic Guarantees . 49
5.3.2 Outline of Analysis . 50

6 Conclusion 52

vii

Chapter 1

Introduction

In the group testing problem, the goal is to identify a small subset S of defective items of size

k within a larger set of items of size n, based on a number T of tests. This problem is relevant

in areas such as medical testing, DNA sequencing, and communication protocols [3, Sec. 1.7],

and more recently, utility in testing for COVID-19 [4, 5, 6]. Some important distinctions [3] in

group testing are as follows:

• Adaptive vs. non-adaptive. Under adaptive testing, the test pools are designed se-

quentially, and each one can depend on the previous test outcomes. Under non-adaptive

testing, the test pools are designed in advance before the testing process. This makes

parallel implementation of the tests more viable.

• Noiseless vs. noisy testing. Under noiseless testing, we are guaranteed that the test

procedure works perfectly: We get a negative test outcome if all items in the testing pool

are non-defective, and a positive outcome if at least one item in the pool is defective.

Under noisy testing, errors can occur, either according to some specified random model

or in an adversarial manner.

• Known vs. unknown number of defectives. This distinguishes algorithms that need

to be given the true number of defectives (or require estimation of the number of defectives

first), and those that do not.

1

• For-all vs. for-each guarantees. In combinatorial (for-all) group testing, one seeks to

construct a test design that guarantees the recovery of all defective sets up to a certain

size with zero error probability. In contrast, in probabilistic (for-each) group testing, the

test design may be randomized, and the algorithm is allowed some small error probability.

In this report, we present algorithms for noisy and sparsity-constrained (bounded tests-per-

item or items-per-test) variants of group testing with a near-optimal sublinear decoding time,

building on techniques recently proposed for the unconstrained noiseless group testing problem

[7, 8]. These extensions come with new challenges presented by the need to handle both false

positive and false negative tests in the noisy setting, and the infeasibility of the designs in [7, 8]

in the sparsity-constrained setting.

1.1 Problem Setup

Let n denote the number of items, which we label as {1, . . . , n}. Let S ⊂ {1, . . . , n} denote

the fixed set of defective items, and let k = |S| be the number of defective items. To avoid

cumbersome notation, we present our algorithms in a form that uses k directly; however, the

analysis goes through unchanged when an upper bound k̄ ≥ k is used instead, and k̄ replaces k

in the number of tests and decoding time.

We are interested in asymptotic scaling regimes in which n is large and k is comparatively

small, and thus assume that k = o(n) throughout. We let T = T (n) be the number of tests

performed. In the noiseless setting, the i-th test takes the form

Y (i) =
∨
j∈S

X
(i)
j , (1.1)

where the test vector X(i) =
(
X

(i)
1 , . . . , X

(i)
n

)
∈ {0, 1}n indicates which items are are included

in the test, and Y (i) ∈ {0, 1} is the resulting observation, indicating whether at least one

defective item was included in the test. The goal of group testing is to design a sequence of

tests X(1), . . . , X(T), with T ideally as small as possible, such that the outcomes can be used

to reliably recover the defective set S with probability close to one, while ideally also having

2

a low-complexity decoding procedure. We focus on the non-adaptive setting, in which all tests

X(1), . . . , X(T) must be designed prior to observing any outcomes.

We consider the for-each recovery guarantee; specifically, we seek to develop a randomized

algorithm that, for any fixed defective set S of cardinality k, produces an estimate Ŝ such that

the error probability Pe := P
[
Ŝ 6= S

]
is asymptotically vanishing as n → ∞. For all of our

algorithms, only the tests
{
X(i)

}T
i=1

will be randomized, and the decoding procedure will be

deterministic given the test outcomes.

Notation. Throughout the report, the function log(·) has base e, and we make use of

Bachmann-Landau asymptotic notation (i.e., O, o, Ω, ω, Θ), as well as the notation Õ(·), which

omits poly-logarithmic factors in its argument.

1.1.1 Noisy Setting

Generalizing (1.1), we consider the following widely-adopted symmetric noise model:

Y (i) =

(∨
j∈S

X
(i)
j

)
⊕ Z, (1.2)

where Z ∼ Bernoulli(p) for some p ∈ (0, 1/2), and ⊕ denotes modulo-2 addition. While the

symmetry assumption may appear to be restrictive, our results and analysis will hold with

essentially no change under any non-symmetric random noise model where 0 → 1 flips and

1→ 0 flips both have probability at most p.

1.1.2 Sparsity-Constrained Setting

In the sparsity-constrained group testing problem [2], the testing procedure is subjected to one

of two constraints:

• Items are finitely divisible and thus may participate in at most γ = o(log n) tests;

• Tests are size-constrained and thus contain no more than ρ = o(n/k) items per test.

For instance, in the classical application of testing blood samples for a given disease [9], the γ-

divisible items constraint may arise when there are limitations on the volume of blood provided

by each individual, and the ρ-sized test constraint may arise when there are limitations on the

3

number of samples that the machine can accept, or on the number that can be mixed together

while avoiding undesirable dilution effects.

It is well known that if each test comprises of Θ(n/k) items, then Θ(min{n, k log n}) tests

suffice for group testing algorithms with asymptotically vanishing error probability [10, 11, 12,

13]. Moreover, this scaling is known to be optimal [14]. Hence, the parameter regime of primary

interest in the size-constrained setting is ρ = o(n/k). By a similar argument, the parameter

regime of primary interest in the finitely divisible setting is γ = o(log n).

It was shown in [2] that in the case of finitely divisible items, if the tests are subject to random

noise of the form in (1.2), then the error probability is bounded away from zero regardless of the

total number of tests whenever γ = o(log k). Thus, at least in most scaling regimes of interest,

handling noise and finite-divisibility constraints simultaneously would require changing the noise

model and/or the recovery criteria, and we make no attempt to do so. On the other hand, for

noisy size-constrained tests, schemes that attain asymptotically vanishing error probability do

indeed exist [2]. However, the techniques that we introduce for the noisy setting and the size-

constrained setting appear to be incompatible (see Chapter 6 for a brief explanation); we thus

only consider the two separately, and leave their combination for future work.

Mathematical and Computational Assumptions. For all algorithms presented in this

report, we assume a word-RAM model of computation; for instance, with n items and T tests,

it takes O(1) time to read a single integer in {1, . . . , n} from memory, perform arithmetic

operations on such integers, fetch a single test outcome indexed by {1, . . . , T} and so on.

For simplicity of notation, we assume throughout the analysis that k, n, and ρ are powers

of two. Our algorithm only requires an upper bound on the number of defectives, and hence,

any other value of k can simply be rounded up to a power of two. In addition, the total number

of items n can be increased to a power of two by adding “dummy” non-defective items, and ρ

can be rounded down without impacting our final scaling laws (we do not seek to characterize

the precise constants).

4

Reference Number of tests Decoding time Construction

Lower Bound [15] Ω
(
k log n

k

)
– –

Inan et al. [18] O(k log n) Ω(n) Explicit

Inan et al. [19] O(k log n) O
(
k3 · log k + k log n

)
Explicit

NCOMP & NDD [10, 20, 17] O(k log n) Ω(n) Randomized

GROTESQUE [21] O(k · log k · log n) O
(
k(log n+ log2 k)

)
Randomized

SAFFRON [22] O(k · log k · log n) O(k · log k · log n) Randomized

BMC [23] O(k log n) O(k2 · log k · log n) Randomized

This report O(k log n) O
((
k log n

k

)1+ε)
Randomized

Table 1.1: Overview of existing noisy non-adaptive group testing results under the for-each guar-

antee. A construction is said to be explicit if its test matrix can be computed deterministically

in polynomial time, and in the final row, ε is an arbitrarily small positive constant.

1.2 Related Work

While extensive works have studied the number of tests for various group testing strategies

(see [3] for a survey), relatively fewer have sought efficient poly(k log n) decoding time. For

the standard noiseless group testing problem, the most relevant existing results come from two

recent concurrent works [7, 8], which showed that there exists a non-adaptive group testing

algorithm that succeeds with O(k log n) tests and has O(k log n) decoding time. We will build

on their splitting techniques to develop our algorithms in this report (see Figures 2.1, 3.1, and

4.1 below).

For noisy non-adaptive group testing under the noise model in (1.2), the most relevant

existing results are summarized in Table 1.1. Under Ω(n)-decoding time, we note that the

references shown are only illustrative examples, and that several additional works also exist with

O(k log n) scaling, e.g., [15, 16, 17]. More relevant to our work is the fundamental limitation

that the works attaining O(k log n) scaling only attain a quadratic or worse dependence in k

in the decoding time (or Ω(n)). On the other hand, GROTESQUE and SAFFRON attain

k poly(log n) decoding time, but fail to attain order-optimality in the number of tests.

5

For (noiseless) sparsity-constrained group testing, we present a summary of previous algo-

rithms attaining the for-each recovery guarantee in Table 1.2. Our algorithm for finitely divisible

items matches that of the COMP algorithm1 in the number of tests when γ = ω(1) (and comes

close more generally), while having much lower decoding time. Furthermore, our algorithm for

size-constrained tests succeeds with an order-optimal O(n/ρ) number of tests, with matching

O(n/ρ) decoding time.

In a distinct but related line of works, the for-all recovery guarantee (i.e., zero error proba-

bility) was considered [24, 25, 26, 27], with typical results for the unconstrained setting requiring

O(k2 log n) tests and poly(k log n) decoding time. In the sparsity-constrained setup, [27] gives a

lower bound of Ω
(

min
{
n, k

2k
γ−1+kn

k
γ−1+k

})
and an algorithm that requires O

(
min

{
n, kn

k
γ−1+k

})
tests and runs in poly(k) + O(T) time for the γ-divisible items, and a lower bound of Ω

(
knρ
)

and an algorithm that requires T = O
(
knρ
)

tests and runs in poly(k) + O(T) time for the ρ-

sized tests. Under all variants of the group testing problem, the stronger zero-error-probability

guarantee comes at the price of requiring considerably more tests, and we thus omit detailed

comparisons to our results.

1.3 Summary of Results

Here we informally summarize our main results, formally stated in Theorems 2.2.1, 3.2.1, and

4.2.1.

• Noisy setting: For any parameters t = O(1) and ε ∈ (1/t, 1), there exists a non-

adaptive group testing algorithm that succeeds with probability 1−O
((
k log n

k

)1−εt)
using

O(k log n) tests and O
((
k log n

k

)1+ε)
decoding time.

• Finitely-divisible items: A special case of our result states that for any βn = 1
poly(logn) ,

there exists a non-adaptive group testing algorithm that succeeds with probability 1 −

O(βn) using Õ
(
γkn1/γ

)
tests and O

(
γkn1/γ

)
decoding time provided that γ = ω(1). The

1The COMP algorithm simply labels any item in an negative test as non-defective, and all other items as

defective.

6

Reference Number of tests Decoding time Construction
γ

-d
iv

is
ib

le
it

em
s

Lower Bound [28, 29, 1] Ω
(
γkmax

{
k, nk

}1/γ)
– –

Gandikota et al. [2] O
(
γk2
(
n
k2

)1/γ)
O
(
k2 log

(
n
k2

))
Explicit

COMP [2] Õ(γkn1/γ) Ω(n) Randomized

DD [29, 1] O
(
γkmax

{
k, nk

} 1+o(1)
γ
)

Ω(n) Randomized

This report Õ(γkn1/γ) O(γkn1/γ) Randomized

ρ
-s

iz
ed

te
st

s

Lower Bound [2, 1] Ω
(
n
ρ

)
– –

Gandikota et al. [2]
O
(

max
{
n
ρ log ρ,

k2 log
(
n
k2

)}) O(T) Explicit

COMP & DD [2, 1] O
(
n
ρ

)
Ω(n) Randomized

This report O
(
n
ρ

)
O
(
n
ρ

)
Randomized

Table 1.2: Overview of existing noiseless non-adaptive group testing results for non-adaptive

sparsity-constrained group testing under the for-each guarantee. For entries containing Õ(·)

notation, the results correspond to 1
poly(logn) error probability, but more general variants are

also available. A construction is said to be explicit if its test matrix can be computed deter-

ministically in polynomial time; the results shown for explicit constructions additionally require

k = O(
√
n).

case of finite γ will also be handled with only slightly worse scaling laws, and we will

specify the precise dependence on βn, without resorting to Õ(·) notation.

• Size-constrained tests: For any ζ > 0, there exists a non-adaptive group testing algo-

rithm that succeeds with probability 1−O
(
n−ζ

)
using O

(
n/ρ

)
tests and O

(
n/ρ

)
decoding

time.

In the noisy setting, we significantly improve on the best previous known decoding time among

any algorithm using an order-optimal O(k log n) number of tests. Specifically, [23] incurred

a quadratic dependence on k, whereas we incur a near-linear dependence. Similarly, in the

sparsity-constrained setting, we attain a decoding time that matches the number of tests where

previous algorithms using the same number of tests incurred Ω(n) decoding time.

7

While our focus is on the number of tests and decoding time, another important practical

consideration is the storage required. Naively, the algorithms attaining the above results require

Ω(n) storage. However, in Chapter 5, we discuss storage reductions via hashing, attaining

identical results with sublinear storage in the noisy and size-constrained settings, and similar

(but slightly weaker) results in the finitely-divisible setting.

8

Chapter 2

Algorithm for the Noisy Setting

Our algorithm for the noisy setting resembles the non-adaptive binary splitting approach of [7,

8], where we first test large groups of items together, placing each group into a single randomly-

chosen test among a sequence (i.e., subset) of tests. Afterwards, these groups are “split” into

smaller sub-groups, while using the previous test outcomes to eliminate those believed to be

non-defective. This process is repeated—with the elimination step ensuring that the number

of groups under consideration does not grow too large—until a superset of S is found. Finally,

S is deduced from the superset via a final sequence of tests. We can visualize this using a tree

(see Figure 2.1), where each level of the tree represents a stage of the splitting process, each

node represents a group of items, and each split creates two edges.

The main difference between our noisy algorithm and [7, 8] is that when deciding whether

a given node is defective or not, we have to look several levels further down the tree (instead

of only considering the single test outcome of the given node). This somewhat complicates the

analysis, and leads to a small increase in the decoding time. Additionally, in order to reduce

the effective noise level, each node in the tree is placed in multiple tests, rather than just one.

2.1 Description of the Algorithm

Following [7, 8], our algorithm considers a tree representation (see Figure 2.1), in which each

node corresponds to a set of items. The levels of the tree are indexed by l = log2 k, . . . , log2 n

9

𝑛

𝑛/𝑘

1

𝑛/𝑘

1

𝑇len

𝑇len
′

𝑙 = log2 𝑘

𝑙 = log2 𝑛

𝑁 ×

𝐶′𝑁 log2 𝑛 ×

Figure 2.1: Tree structure of our algorithm for the noisy setting.

and the j-th node at the l-th level is denoted by G(l)
j ⊆ {1, . . . , n}. The algorithm works down

the tree one level at a time, keeping a list of possibly defective (PD) nodes, and performing tests

to obtain such a list at the next level. When we perform tests at a given level, we treat each

node as a “super-item”; including a node in a test amounts to including all of the items in the

corresponding node G(l)
j . In addition, for the tree illustrated in Figure 2.1, we refer to nodes

containing at least one defective item as defective nodes, to all other nodes as non-defective

nodes, and to the sub-tree of defective nodes as the defective tree.

The testing is performed as follows: At each level of the tree, N sequences of tests are

formed, each having length Tlen (i.e., a total of NTlen tests per level). For each node and each

of the N sequences, the node is placed into a single test, chosen uniformly at random among

the Tlen tests.

We make an important distinction between the intermediate label and final label of a given

node:

• The intermediate label is formed via majority voting of the N tests that the node is

included in.

• To obtain the final label of a given node, we look at the intermediate labels of all nodes

up to r levels below the given node. If there exists any length-r path below the given node

with more than r/2 positive intermediate labels, then we assign the node’s final label to

be positive. Otherwise, we assign it to be negative.

According to the tree structure in Figure 2.1, once we reach the later levels, there may be fewer

10

Figure 2.2: In the case of l ≤ log2 n − r (i.e., there are at least r levels below the node), the

diagram on the left shows an example of a length-r path. Otherwise, we have l > log2 n−r (i.e.,

there are less than r levels below the node), and the diagram on the right shows an example of

a length-r path.

than r levels remaining. To account for such cases, we simply ensure that sufficiently many

tests are performed at the final level so that a length-r “path” can be formed (here, no further

branching is done, and each “node” is the same singleton); see Figure 2.2 for an illustration.

With the above notation and terminology in place, the overall test design is described in

Algorithm 1, and the decoding procedure in Algorithm 2.

2.2 Algorithmic Guarantees

Theorem 2.2.1. (Algorithmic guarantees) Let S be a (defective) subset of {1, . . . , n} of car-

dinality k = o(n). For any constants ε > 0 and t > 0 satisfying εt > 1, there exist choices

of C,C ′, N = O(1) and r = O(log k + log log n) such that with O
(
k log n

)
tests, the preceding

algorithm satisfies the following with probability at least 1−O
((
k log n

k

)1−εt)
:

• The returned estimate Ŝ equals S;

• The decoding time is O
((
k log n

k

)1+ε)
.

11

Algorithm 1 Testing procedure for the noisy setting

Require: Number of items n, number of defective items k, and parameters N , C, and C ′

1: Initialize Tlen = Ck and T ′len = k.

2: for each l = log2 k, . . . , log2 n− 1 do

3: for each iteration in {1, . . . , N} do

4: for j = 1, 2, . . . , 2l do

5: Place all items from each node G(l)
j into a single test in a sequence of length Tlen,

chosen uniformly at random.

6: At level l = log2 n, form C ′N log2 n sequences of tests, each of length T ′len.

7: for each singleton at the final level do

8: for each of the C ′N log2 n test sequences do

9: Place the singleton in one of the corresponding T ′len tests, chosen uniformly at random.

2.3 Analysis

The outline of the analysis is as follows:

• We first consider levels l = log2 k, . . . , log2 n−1, and bound the probability that any node

among three kinds—non-defective nodes at lmin, defective nodes, and non-defective child

nodes of defective nodes—are identified wrongly. Note that we do not have to consider

other nodes, because if none of the nodes of these three kinds are identified wrongly, then

the algorithm would not explore any of the other nodes when decoding.

• Conditioned on the correct identification of nodes of these three kinds, we consider the

final level l = log2 n and provide a bound for its error probability.

2.3.1 Analysis of Levels l = log2 k, . . . , log2 n− 1

We consider defective and non-defective nodes separately.

Defective nodes: Let p
(d)
int (respectively, p

(d)
final) be the probability that the intermediate

label (respectively, final label) of a given defective node is flipped from a one to a zero. Note

that these may vary from node to node, but we will give upper bounds that hold uniformly.

12

For a given defective node, there are only two possible situations for each test it is in: A

positive outcome due to no flip, or a negative test outcome due to a 1 → 0 flip. Hence, the

number of negative tests that a given defective node participates in (i.e., the outcome is flipped)

is distributed as Binomial(N, p). By the majority voting of N test outcomes at a given level,

p
(d)
int is upper bounded by the probability that a given defective node participates in at least N/2

negative tests. Applying Hoeffding’s inequality, we obtain

p
(d)
int ≤ exp

(
− 2N

(1

2
− p
)2
)
. (2.1)

At this point, we introduce the variable t appearing in the theorem statement. Since exp
(
−

2N(1/2− p)2
)
≤ 2−2t

4 ⇔ N ≥ 2t log 2+log 4
2(1/2−p)2 , we find that choosing N ≥ 2t log 2+log 4

2(1/2−p)2 ensures that

p
(d)
int ≤

2−2t

4
. (2.2)

For the case that l ≤ log2 n − r, we consider the length-r paths below the defective node.

The defective node will be labeled as negative if all 2r paths below it have at least r/2 negative

intermediate labels. The probability of this event is upper bounded by the probability that one

particular defective path (i.e., every node along the path is defective) has at least r/2 negative

intermediate labels, which is at most(
r

r/2

)(
p

(d)
int

)r/2 ≤ (4p(d)
int

)r/2
, (2.3)

where the left hand side (LHS) is by the union bound, and the right hand side (RHS) is by(
r
r/2

)
≤ 2r. This gives p

(d)
final ≤

(
4p

(d)
int

)r/2
, and substituting (2.2) gives p

(d)
final ≤ 2−tr.

For the case that l > log2 n − r (i.e., there are less than r levels below the given node),

the probability of the defective path having at least r/2 negative intermediate labels remains

unchanged, and hence, the preceding bound p
(d)
final ≤ 2−tr still holds. Note that this step requires

C ′ log2 n ≥ r in order to have enough intermediate labels per node in the final level to “pad”

paths of length less than r (see Figure 2.2), and we will later set C ′ and r to ensure this.

Non-defective nodes: Let p
(nd)
int (respectively, p

(nd)
final) be the probability that the intermedi-

ate label (respectively, final label) of a given non-defective node is flipped from a zero to a one.

Again, these may vary from node to node, but we will give upper bounds that hold uniformly.

13

For a given non-defective node, there are four possible situations for each test: A negative out-

come with no flip (i.e., no defectives), a negative outcome due to a 1→ 0 flip (i.e., at least one

defective), a positive outcome with no flip (i.e., at least one defective), and a positive outcome

due to a 0→ 1 flip (i.e., no defectives).

Focusing on one test sequence of length Tlen = Ck for now, let A be the event that a given

non-defective node participates in a positive test, and let B be the event that the given node’s

test contains no defective item. We have

P[A] = P[B] · P[A|B] + P[¬B] · P[A|¬B] (2.4)

(a)

≤ P[B] · p+
1

C
(1− p) (2.5)

≤ p+
1

C
, (2.6)

where (a) holds since the probability of being in the same test as a given defective node is

1/Tlen = 1/(Ck), and thus the union bound over k defective nodes gives P[¬B] ≤ 1/C.

Equation (2.6) implies that for a given non-defective node, the number of positive tests that

it participates in (out of N tests in total) is stochastically dominated by Binomial(N, p+ 1/C).

Recalling that p
(nd)
int is the probability that a given non-defective node participates in at least

N/2 positive tests, Hoeffding’s inequality gives

p
(nd)
int ≤ exp

(
− 2N

(1

2
− p− 1

C

)2
)
, (2.7)

where we require 1/2 − p − 1/C > 0 ⇔ C > 2/(1 − 2p). Hence, we set C = d2/(1 − 2p)e + 1.

Since exp
(
− 2N(1/2 − p − 1/C)2

)
≤ 2−2t

16 ⇔ N ≥ 2t log 2+log 16
2(1/2−p−1/C)2 , we find that choosing N ≥

2t log 2+log 16
2(1/2−p−1/C)2 ensures that

p
(nd)
int ≤

2−2t

16
. (2.8)

For the case that l ≤ log2 n− r, we look at the length-r path below the non-defective node.

The non-defective node will be labeled as positive if any of the 2r paths below it has more than

r/2 positive intermediate labels. By union bound over all 2r paths, this probability is upper

bounded as follows, similar to (2.3):

2r
(
r

r/2

)(
p

(nd)
int

)r/2 ≤ 2r
(
4p

(nd)
int

)r/2 ≤ (16p
(nd)
int

)r/2
. (2.9)

14

This gives p
(nd)
final ≤

(
16p

(nd)
int

)r/2
, and substituting (2.8) gives p

(nd)
final ≤ 2−tr.

Similarly to the defective nodes handled above, the case that l > log2 n−r follows essentially

unchanged; while the above analysis has an additional union bound over 2r paths, the number

of paths when l > log2 n− r only gets smaller. Hence, the preceding bound on p
(nd)
final ≤ 2−tr also

holds in this case.

Combining the defective and non-defective cases: Taking the more stringent require-

ment on N in the above two cases, we set

N =

⌈
2t log 2 + log 16

2(1/2− p− 1/C)2

⌉
, (2.10)

and we observe that regardless of the defectivity of a given node, the probability of the node’s

final label being wrong is at most 2−tr.

Next, we upper bound the probability that any node among three groups—non-defective

nodes at lmin, defective nodes, and children nodes of all defective nodes—is identified wrongly.

Note that if all such nodes are identified correctly, then the branching is only ever continued for

defective nodes, and it follows that at most 2k nodes remain at the final level (analyzed below).

Since there are log2(n/k) levels and k defectives, the number of non-defective children nodes

of defective nodes is at most k log2(n/k), and the number of non-defective nodes at lmin is at

most k. Summing these up, we have at most 2k log2(n/k)+k nodes. By taking the union bound

over all 2k log2(n/k) + k nodes, the probability of making an error in identifying any node in

the mentioned three groups is at most 2−tr(2k log2(n/k) + k). This can be upper bounded by

a given target value βn (approaching zero as n→∞), provided that

2−tr
(

2k log2

(n
k

)
+ k

)
≤ βn, (2.11)

which rearranges to give

r ≥ 1

t
log2

(
2k

βn
log2

(n
k

)
+

k

βn

)
. (2.12)

By choosing

r =
1

t
log2

(
3k

βn
log2

(n
k

))
. (2.13)

we deduce that the probability of any wrong decision is upper bounded by βn.

15

2.3.2 Analysis of the Final Level

Recall from the analyses of (2.2) and (2.8) that given our choice of N in (2.10), regardless of

the defectivity of a given node, the probability of a wrong intermediate label—let us call this

pint—is at most 2−2t/4. To get the final label of each node (singleton), we conduct a majority

voting of C ′ log2 n intermediate labels. Hence, a given node is labeled wrongly when it has

at least (C ′ log2 n)/2 wrong intermediate labels. This gives the following upper bound on the

probability of a wrong final label, denoted by pfinal:

pfinal ≤
(

C ′ log2 n

(C ′ log2 n)/2

)(
pint

)(C′ log2 n)/2 ≤
(
4pint

)(C′ log2 n)/2
(a)

≤ 2−tC
′ log2 n, (2.14)

where (a) uses pint ≤ 2−2t/4. Taking the union bound over all n nodes at the final level, we get

n
(
2−tC

′ log2 n
)

= n
(
n−tC

′)
= O(n1−tC′), (2.15)

which approaches zero as n→∞ as long as tC ′ > 1. Note that while we show that all n nodes

(singletons) at the final level will be correctly identified, only at most 2k will be used by the

algorithm. This is because we have shown earlier in (2.11) that with probability 1 − βn, all

non-defective nodes at lmin, all nodes in the defective tree, and all children nodes of all defective

nodes, are correctly identified, which implies that |PD(log2 n)| ≤ 2k.

2.3.3 Number of Tests, Error Probability, and Decoding Time

For convenience, we restate all the values that we have assigned in our analysis above:

C =

⌈
2

1− 2p

⌉
+ 1 = O(1) (2.16)

N =

⌈
2t log 2 + log 16

2(1/2− p− 1/C)2

⌉
= O(t) (2.17)

r =
1

t
log2

(
3k

βn
log2

(n
k

))
= O

(
1

t
log
(k log(n/k)

βn

))
, (2.18)

where p ∈ (0, 1/2) is the noise level. Now, we choose t = O(1) and βn =
(
k log2(n/k)

)1−εt
, for

some constant ε ∈ (1/t, 1). Choosing βn =
(
k log2(n/k)

)1−εt
in (2.18) gives

r =
1

t
log2

(
3k log2(n/k)(
k log2(n/k)

)1−εt) =
1

t
log2

(
3
(
k log2

(n
k

))εt)
. (2.19)

16

Recall that we require C ′ log2 n ≥ r, or equivalently C ′ ≥ r/ log2 n. Substituting (2.19) into

C ′ ≥ r/ log2 n, we find that we require

C ′ ≥
1
t log2

(
3
(
k log2

(
n
k

))εt)
log2 n

, (2.20)

Since ε is constant, we choose a C ′ = O(1) that is large enough to satisfy (2.20). With our

choices of C,C ′, N, t = O(1) and βn = Θ
(
(k log n)1−εt), we obtain the following:

• Number of tests: We used CNk tests per level for l = log2 k, . . . , log2 n − 1. At the

final level l = log2 n, we used CC ′Nk log2 n tests. Summing these together gives

T ≤ CNk log2

(n
k

)
+ CC ′Nk log2 n

(a)
= O(k log n), (2.21)

where (a) follows by substituting C,C ′, N = O(1) and simplifying.

• Error probability: Combining the error probabilities from all levels, we have a total

error probability of at most

βn +O
(
n1−tC′) = O

((
k log

(n
k

))1−εt
)
, (2.22)

by substituting βn =
(
k log2(n/k)

)1−εt
and choosing C ′ sufficiently large.

• Decoding time: The decoding time depends on the number of test outcome checks made.

For l = log2 k, . . . , log2 n − 1, w.h.p.,1 we involved O
(
k log n

k

)
nodes in total. For each

node involved, we checked at most
∑r

i=1 2i = O
(
2r
) (2.18)

= O
((k log(n/k)

βn

)1/t)
intermediate

labels of other nodes to decide the final label of the given node. For each these nodes

being checked, we checked N = O(t) test outcomes to determine the intermediate label.

Therefore, the decoding time for these levels is

O

(
k log

(n
k

)
·
(k log(n/k)

βn

)1/t
· t
)
, (2.23)

At the final level l = log2 n, we have already shown that w.h.p., at most 2k nodes remain

possibly defective. For each such node, we checked C ′ log2 n intermediate labels to decide

1Here and subsequently, we write with high probability (w.h.p.) to mean holding under the high-probability

events used in proving that the algorithm succeeds.

17

the final label of the given node. To decide each intermediate label, we checked N = O(t)

test outcomes. Therefore, the decoding time is O(2k · C ′ log n · t). Summing this with

(2.23) gives us the total decoding time of

O

(
k log

(n
k

)
·
(k log(n/k)

βn

)1/t
· t
)

+O(2k · C ′ log n · t) = O
((
k log

n

k

)1+ε)
, (2.24)

by substituting C ′, t = O(1) and βn =
(
k log2(n/k)

)1−εt
, and noting that the O(k log n)

term is dominated by O
((
k log n

k

)1+ε)
regardless of the scaling of k.

18

Algorithm 2 Decoding procedure for the noisy setting

Require: Outcomes of T non-adaptive tests, number of items n, number of defective items k,

and parameters N , C, C ′, and r

1: Initialize PD(lmin) =
{
G(lmin)
j

}k
j=1

, where lmin = log2 k.

2: for l = log2 k, . . . , log2 n− 1 do

3: if l ≤ log2 n− r (i.e., there are at least r levels below the node) then

4: for each group G ∈ PD(l) do

5: Evaluate the intermediate labels of all nodes r levels below G.

6: else if l > log2 n− r (i.e., there are fewer than r levels below the node) then

7: for each group G ∈ PD(l) do

8: Evaluate the intermediate labels of all nodes all levels below G except the final level.

9: for each node reached at the final level do

10: Iterate through the C ′N log2 n test outcomes in batches of size N : Conduct a

majority vote for each batch to obtain an intermediate label for the node.

11: Use intermediate labels from each node in the final level to make up paths of length

r (see Figure 2.2).

12: If ∃ a path with more than r/2 positive intermediate labels, then assign G’s final label to

be positive. Otherwise, assign G’s final label to be negative.

13: If the final label of G is positive, then add both children of G to PD(l+1).

14: At the final level, for each node (singleton), repeat step 10 to obtain C ′ log2 n intermediate

labels for the node, and conduct a majority vote for the node’s intermediate labels to obtain

its final label.

15: Return Ŝ containing the elements of singletons in PD(log2 n) with a positive final label.

19

Chapter 3

Algorithm for Finitely Divisible

Items

Under finitely-divisible items, we again build on the non-adaptive binary splitting approach of

[7, 8], with the following main differences (see Figure 3.1):

• We use a shorter tree of height γ′ ≤ γ. This is because a given item is placed in a single

test at each level, so the assumption γ = o(log n) prohibits us from having O(log n) levels.

We consider γ′ ≤ γ so that the remaining budget can be used at the final layer, and we

later optimize γ′ to minimize the number of tests.

• In view of the shorter height, we use non-binary splitting; this was considered under adap-

tive testing in [28, 29], and our algorithm can be viewed as a non-adaptive counterpart, in

the same way that [7, 8] can be viewed as a non-adaptive counterpart of Hwang’s binary

splitting algorithm [30].

• In contrast to the unconstrained setting, we cannot readily use the idea of using N se-

quences of tests at each level while only increasing the number of tests by a factor of

N = O(1). Here, such an approach turns out to be highly wasteful in terms of its use of

the limited γ budget, and we avoid it altogether.

• At the top level of the tree (excluding the root), we use individual testing (i.e., each node

20

has its own test). This guarantees that no non-defective node from the second level can

“continue” down the tree, which simplifies our analysis.

3.1 Description of the Algorithm

The levels of the tree, summarized in Figure 3.1, are indexed by l = 0, 1, . . . , γ′. Since testing

at the root is not informative (we will always get a positive outcome), we start our testing

procedure at l = 1 (the second level of nodes in Figure 3.1). We choose1 M = (n/k)
γ′−1
γ′ ,

Tlen = Ck(n/k)1/γ′ and T ′len = γ′k(n/k)1/γ′ , where C is a constant. Here the choice of M is

taken to match the near-optimal adaptive splitting algorithm of [28], and the choices of Tlen and

T ′len are motivated by the goal of having a number of tests matching the COMP algorithm (see

Table 1.2). Under these preceding choices, the total number of tests (excluding the last level)

is given by

n

M︸︷︷︸
l=1

+ γ′ · Ck
(n
k

) 1
γ′︸ ︷︷ ︸

l=2,...,γ′−2

+ γ′k
(n
k

) 1
γ′︸ ︷︷ ︸

l=γ′−1

= O

(
γ′k
(n
k

) 1
γ′
)
. (3.1)

The overall testing procedure is described in Algorithm 3, and the decoding procedure is de-

scribed in Algorithm 4. The j-th node at the l-th level is again written as G(l)
j .

Here and subsequently, we assume that γ ≥ 3. We note that the case γ = 1 is trivial, and

while γ = 2 could be handled by omitting the step at level l = γ′ containing T ′′len tests, this

variant is omitted for the sake of brevity.

3.2 Algorithmic Guarantees

Theorem 3.2.1. (Algorithmic guarantees) Let S be a fixed (defective) subset of {1, . . . , n} of

cardinality k, let γ = o(log n) (with γ ≥ 3) be the maximum number of times each item can be

tested, and fix γ′ ∈ {3, . . . , γ} and any function βn decaying as n increases. There exist choices2

1Here and subsequently, we assume for notation convenience that (n/k)1/γ and (n/k)1/γ′ are integers. Since

we focus on scaling laws, the resulting effect of rounding has no impact on our results.

2Specifically, we will set Tlen = O
(
k(n/k)1/γ′

)
, T ′len = γ′k(n/k)1/γ′ , and T ′′len = k(k/βn)

1
γ−γ′+1 (n/k)

1
γ′(γ−γ′+1) .

21

𝑛

𝑀

1

𝑀

1

𝑛/𝑀

𝑇len

𝑇len
′′ × (𝛾 − 𝛾′ + 1)𝑙 = 𝛾′

𝑀
1

𝛾′−1 𝑀
1

𝛾′−1 𝑇len
′

𝑙 = 1

Figure 3.1: Tree structure of our algorithm. From the second level onwards, the branching

factor is M
1

γ′−1 .

of Tlen, T ′len, and T ′′len such that with

T = O

(
γkmax

{(n
k

) 1
γ′
,
(k
βn

) 1
γ−γ′+1

(n
k

) 1
γ′(γ−γ′+1)

})
, (3.2)

the preceding algorithm satisfies the following with probability at least 1−O(βn)− e−Ω(k):

• The returned estimate Ŝ equals S;

• The decoding time is3 O
(
γk(n/k)1/γ′

)
.

In order to better understand this bound on T , we consider k = Θ
(
nθ
)

for some θ ∈ [0, 1),

and βn = 1
poly(logn) . We use Õ(·) notation to hide poly-logarithmic factors, and accordingly

omit βn and focus on the remaining terms. Substituting k = Θ
(
nθ
)

into (5.47), we obtain

T = Õ
(
γkmax

{
n

1−θ
γ′ , n

θ
γ−γ′+1

+ 1−θ
γ′(γ−γ′+1)

})
. (3.3)

Momentarily ignoring the integer constraint on γ′, we obtain the optimal γ′ by solving 1−θ
γ′ =

θ
γ−γ′+1 + 1−θ

γ′(γ−γ′+1) , which simplifies to γ′ = (1−θ)γ. Substituting γ′ = (1−θ)γ back into (5.47)

gives T = Õ
(
γkn1/γ

)
. In addition, by the same substitution, we obtain O

(
γkn1/γ

)
decoding

time. In this case, the bound on T is the same as the bound for the COMP algorithm (see

Table 1.2).

3In certain scaling regimes, this decoding time may be lower than the number of tests. This is because the

algorithm sequentially decides which tests outcomes to observe, and does not necessarily end up observing every

outcome.

22

Algorithm 3 Testing procedure for γ-divisible items

Require: Number of items n, number of defective items k, divisibility of each item γ, and

parameters γ′, M , Tlen, T ′len, and T ′′len

1: At l = 1, test each node separately in a single test (no randomization).

2: for each l = 2, 3, . . . , γ′ − 1 do

3: if l = γ′ − 1 then form a sequence of tests of length T ′len.

4: else form a sequence of tests of length Tlen.

5: for j = 1, 2, . . . , nM (M)(l−1)/(γ′−1) do

6: Place all items from each group G(l)
j into a single test, chosen uniformly at random.

7: For l = γ′, form γ − γ′ + 1 sequences of tests, each of length T ′′len.

8: for each singleton do

9: for each of the γ − γ′ + 1 sequences of tests do

10: Place the item in one of the corresponding tests, chosen uniformly at random.

In the case that γ = ω(1), it is straightforward to establish that the integer constraint on

γ′ does not impact the above findings. However, for γ = O(1), we need to carefully account

for the integer constraint. We start by noting that the function max
{

1−θ
γ′ ,

θ
γ−γ′+1 + 1−θ

γ′(γ−γ′+1)

}
is convex on [3, γ]; this is easily proved by computing the second derivative of each term in

max{., .}. Since a convex function is monotone on either side of its minimum (in this case

(1− θ)γ), it follows that

γ′ = argmin
γ′∈{3,...,γ}

(
γkmax

{
n

1−θ
γ′ , n

θ
γ−γ′+1

+ 1−θ
γ′(γ−γ′+1)

})
(3.4)

=


3 if (1− θ)γ < 3

argmin
γ′∈{b(1−θ)γc,d(1−θ)γe}

(
max

{
1−θ
γ′ ,

θ
γ−γ′+1 + 1−θ

γ′(γ−γ′+1)

})
otherwise.

(3.5)

To see how the splitting algorithm compares to optimal behavior established in [29, 1] (i.e.,

an upper bound for the DD algorithm, and a matching algorithm-independent lower bound)

and the COMP algorithm [2] for different values of γ, we introduce the following asymptotic

23

Algorithm 4 Decoding procedure for γ-divisible items

Require: Outcomes of T non-adaptive tests, number of items n, number of defective items k,

divisibility of each item γ, and parameters γ′, M , Tlen, T ′len, and T ′′len

1: Initialize PD(lmin) =
{
G(lmin)
j

}n/M
j=1

, where lmin = 1.

2: Place all nodes at l = 1 with a positive test outcome into PD(lmin).

3: for l = 2, 3, . . . , γ′ − 1 do

4: for each group G ∈ PD(l) do

5: Check whether the single test corresponding to G is positive or negative.

6: if the test is positive then add all M1/(γ′−1) children of G to PD(l+1)

7: Let the estimate Ŝ of the defective set be the elements in PD(γ′) that are not included in

any of the negative tests from the remaining (γ − γ′ + 1)T ′′len tests.

8: Return Ŝ.

quantity:

η = lim
n→∞

log
(
n
k

)
γ log

(
T
γk

) . (3.6)

Observe that for any fixed value of η > 0, re-arranging gives T ∼ γk
((

n
k

)1/γ)(1+o(1))/η
. With η

defined, we compare the performance in Figure 3.2. We observe that the splitting algorithm’s

curve quickly gets closer to the COMP algorithm’s curve even for fairly low values of γ. On

the other hand, matching the DD algorithm’s curve with sublinear decoding time remains an

interesting open challenge for future work.

3.3 Analysis

Throughout the analysis, the defective set S is fixed but otherwise arbitrary, and we condition

on fixed placements of the defective items into tests (and hence, fixed test outcomes and a fixed

defective tree). The test placements of the non-defective items are independent of those of the

defective items, and our analysis will hold regardless of which particular tests the defectives

were placed in. The defective test placements are written as TS , and we write P[· | TS] to denote

the conditioning.

24

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sparsity parameter q

h

DD & Converse
COMP
Splitting (g =4)
Splitting (g =10)

Figure 3.2: Plot of the asymptotic quantity η (see (3.6)) against the sparsity parameter θ for

the converse (i.e., the lower bound) [1], the DD algorithm [1], the COMP algorithm [2], and our

splitting algorithm (with γ = 4 and γ = 10).

We proceed with three lemmas that follow analogous steps to [8]. At level l = 1, the

probability of a non-defective node being placed in a positive test is zero, because each node is

placed in its own individual test. As for levels l ∈ {2, . . . , γ′− 2}, we proceed with the following

simple lemma.

Lemma 3.3.1. (Probabilities of Non-Defectives Being in Positive Tests) Under the above test

design, the following holds at any given level l = 2, . . . , γ′−2: Conditioned on any defective test

placements TS , any given non-defective node at level l has probability at most (1/C)(n/k)−1/γ′

of being placed in a positive test.

Proof. Since there are k defective items, at most k nodes at a given level can be defective.

Hence, since each node is placed in a single test, at most k tests out of the Ck(n/k)1/γ′ tests

at the given level can be positive. Since the test placements are independent and uniform, it

follows that for any non-defective node, the probability of being in a positive test is at most

k/Tlen = k/
(
Ck(n/k)1/γ′

)
= (1/C)(n/k)−1/γ′ .

25

In view of this lemma, when starting at any non-defective child of any defective node,

we can view any further branches down the non-defective sub-tree as “continuing” (i.e., the

M1/(γ′−1) children are marked as possibility defective) with probability at most (1/C)(n/k)−1/γ′ ,

in particular implying the following.

Lemma 3.3.2. (Probability of Reaching a Non-Defective Node) Under the setup of Lemma

3.3.1, any given non-defective node at distance ∆ from the defective tree is reached (i.e., all

of its ancestors are placed in positive tests, so the node is considered possibly defective) with

probability at most (1/C)∆−1(n/k)(1−∆)/γ′.

We will use the preceding lemmas to control the quantity Ntotal, defined to be the total

number of non-defective nodes that are reached—in the sense of Lemma 3.3.2—among levels

l ∈ {2, . . . , γ′ − 1}. It will be useful to upper bound Ntotal for the purpose of controlling the

overall decoding time and the number of items considered at the final level.

3.3.1 Bounding Ntotal

We first present a lemma bounding the average of Ntotal.

Lemma 3.3.3. (Bounding Ntotal on Average) For any parameters C > 1 and γ′ > 1, and any

defective test placements TS , under the choice M = (n/k)
γ′−1
γ′ , we have

E[Ntotal|TS] = O

(
γ′k
(n
k

) 1
γ′
)
. (3.7)

Proof. At level l = 1, we use n/M tests for individual nodes. This results in correct identification

of the non-defective nodes, guaranteeing that they will not “continue” to branch. Hence, at

level l = 1, we trivially upper bound the number of non-defective nodes by n/M .

For the remaining levels l = 2, . . . , γ′ − 1, all splits are
(
M1/(γ′−1)

)
-ary, and each defec-

tive node can have at most M∆/(γ′−1) descendants at distance ∆. Since there are at most

γ′k defective nodes in total among levels l = 1, . . . , γ′ − 1, it follows that there are at most

γ′kM
∆

γ′−1 non-defective nodes at distance ∆ from defective nodes starting at those levels. Fur-

thermore, we established in Lemma 3.3.2 that a distance of ∆ gives a probability of at most

26

(
1
C

)∆−1(n
k

)(1−∆)/γ′
of being reached. This gives

E[Ntotal|TS] ≤
γ′∑

∆=1

γ′kM
∆

γ′−1

(1

C

)∆−1(n
k

) 1−∆
γ′

+
n

M
(3.8)

= γ′kM
1

γ′−1

γ′∑
∆=1

M
∆−1
γ′−1

(1

C

)∆−1(n
k

) 1−∆
γ′

+
n

M
(3.9)

(a)

≤ γ′kM
1

γ′−1
1

1−M
1

γ′−1
(

1
C

)(
n
k

)−1/γ′
+

n

M
(3.10)

(b)
= γ′k

(n
k

) 1
γ′ 1

1− 1/C
+ k
(n
k

) 1
γ′
, (3.11)

where (a) applies the geometric series formula (increasing the upper limit of the sum from γ′

to ∞), and (b) follows by substituting M = (n/k)
γ′−1
γ′ .

We now wish to move from a characterization of the average to a high-probability charac-

terization. At this point, we depart somewhat further from the analysis of [8], which is based

on branching process theory, and appears to yield suboptimal results in the case that the tree’s

branching factor scales as ω(1).

We introduce the following definition, in which we refer to a full m-ary tree as a tree where

every internal node has exactly m children.

Lemma 3.3.4. [31, Prop. 3.1] (Fuss-Catalan Numbers) For natural integers m,n ≥ 2, the

order-m Fuss-Catalan number

Catnm =
1

(m− 1)n+ 1

(
mn

n

)
≤
(
mn

n

)
≤ (em)n, (3.12)

is the number of full m-ary trees with exactly n internal nodes.

We note that the Catalan numbers also played an important role in the analysis of [7],

but were used in a rather different manner that we were unable to extend to obtain a result

comparable to Theorem 3.2.1. In the proof of the following lemma, these are used in a counting

argument in order to establish the sub-exponential behavior of the random variable Ntotal.

Lemma 3.3.5. (High Probability Bound on Ntotal) For any parameters C ≥ e2 and γ′ > 1,

and any defective test placements TS , under the choice M = (n/k)
γ′−1
γ′ , we have Ntotal =

O
(
γ′k(n/k)1/γ′

)
with probability 1− e−Ω(γ′k).

27

Proof. Consider a single non-defective sub-tree following a defective node, and let Nb be the

number of nodes in the sub-tree such that itself and all its ancestors only appear in positive

tests (i.e., the number of nodes that lead to further branching). We have

P[Nb = nb] ≤ P[∃ a full M1/(γ′−1)-tree reached with nb internal nodes] (3.13)

(a)

≤ (#full M1/(γ′−1)-trees with nb internal nodes) ·
(

1

C

(n
k

)− 1
γ′
)nb

(3.14)

(b)

≤
(
eM1/(γ′−1)

)nb(1

C

(n
k

)− 1
γ′
)nb

(3.15)

(c)
=
(e
C

)nb (d)

≤ e−nb , (3.16)

where (a) applies Lemma 3.3.1 and the union bound, (b) applies Lemma 3.3.4, (c) is obtained

by substituting M = (n/k)
γ′−1
γ′ and simplifying, and (d) holds since C ≥ e2. This implies

that Nb is a sub-exponential random variable. Since we have at most (γ′ − 1)k defective nodes

in levels l = 1, . . . , γ′ − 1, we are adding together O(γ′k) independent copies of such random

variables (each corresponding to a different non-defective sub-tree following a defective node).4

Letting N
(i)
b denote the i-th copy, we can apply a standard concentration bound for sums of

independent sub-exponential random variables [32, Prop. 5.16] to obtain

P
[
N

(1)
b + · · ·+N

(O(γ′k))
b ≥ E[N

(1)
b + · · ·+N

(O(γ′k))
b] + t|TS

]
≤ exp

(
Ω
(

min
{ t2

γ′k
, t
}))

.

(3.17)

Setting t = Θ(γ′k), we get

P[N
(1)
b + · · ·+N

(O(γ′k))
b ≥ E[N

(1)
b + · · ·+N

(O(γ′k))
b] + Θ(γ′k)|TS] ≤ e−Ω(γ′k). (3.18)

Recall that each N
(i)
b only counts “internal” nodes, whereas Ntotal also counts leaves, so passing

from the former to the latter requires multiplying by the branching factor M1/(γ′−1) = (n/k)1/γ′ .

Multiplying on both sides inside the probability in (3.18) accordingly, we obtain

P
[
Ntotal ≥ E[Ntotal] + Θ

(
γ′k
(n
k

)1/γ′
)∣∣∣TS] ≤ e−Ω(γ′k). (3.19)

Substituting E[Ntotal] = O
(
γ′k(n/k)1/γ′

)
(see Lemma 3.3.3) into (3.19), we obtain the desired

result.
4We do not consider the non-defective nodes at level l = 1, because they are guaranteed to be identified

correctly as a result of individual testing of nodes.

28

We now briefly consider level l = γ′ − 1, which uses T ′len = γ′k(n/k)1/γ′ tests (see Figure

3.1). Since |PD(γ′−1)| ≤ Ntotal + k holds trivially, Lemma 3.3.5 implies that |PD(γ′−1)| =

O
(
γ′k(n/k)1/γ′

)
with probability 1 − e−Ω(γ′k). Using the same argument as Lemma 3.3.1, the

probability of a non-defective node being in a positive test at level l = γ′ − 1 is at most

k/T ′len = (1/γ′)(n/k)−1/γ′ . Hence, conditioned on |PD(γ′−1)| = O
(
γ′k(n/k)1/γ′

)
, the number of

non-defective nodes placed in a positive test is stochastically dominated by

Binomial

(
O
(
γ′k
(n
k

)1/γ′)
,

1

γ′

(n
k

)−1/γ′
)
. (3.20)

By a multiplicative form of Chernoff bound, the number of such non-defective nodes in PD(γ′−1)

is O(k) with probability at least 1 − e−Ω(k). Since the branching factor is (n/k)1/γ′ , it follows

that the number of non-defective nodes in PD(γ′) behaves as O(k(n/k)1/γ′).

3.3.2 Analysis of the Final Level

Recall that at the final level, we perform γ − γ′ + 1 independent sequences of tests of length

T ′′len, with each item being randomly placed in one of these T ′′len tests. Conditioned on the

high probability event that |PD(γ′)| = O(k(n/k)1/γ′), we study the required T ′′len for a vanishing

error probability. Specifically, we upper bound the error probability by O(βn) for some decaying

function βn → 0 as n→∞.

For a given non-defective item and a given sequence of T ′′len tests, the probability of colliding

with any defective item is at most k/T ′′len by the same argument as Lemma 3.3.1. Due to the

γ− γ′+ 1 independent repetitions, the probability of a given non-defective item appearing only

in positive tests is at most (k/T ′′len)γ−γ
′+1. By a union bound over O(k(n/k)1/γ′) non-defective

items at the final level, we find that the estimate Ŝ differs from S with (conditional) probability

O
(
k(n/k)1/γ′(k/T ′′len)γ−γ

′+1
)
. The error probability is thus upper bounded by O(βn) provided

that

k
(n
k

) 1
γ′
(k

T ′′len

)γ−γ′+1
≤ βn (3.21)

⇐⇒ T ′′len ≥ k
(k
βn

) 1
γ−γ′+1

(n
k

) 1
γ′(γ−γ′+1)

. (3.22)

Hence, we set T ′′len = k(k/βn)
1

γ−γ′+1 (n/k)
1

γ′(γ−γ′+1) .

29

3.3.3 Number of Tests, Error Probability, and Decoding Time

• Number of tests: For l = 1, . . . , γ′− 1, we used a total of n/M +C(γ′− 3)k(n/k)1/γ′ +

γ′k(n/k)1/γ′ tests, which scales as O
(
γ′k(n/k)1/γ′

)
by substituting M = (n/k)

γ′−1
γ′ and

C = O(1). For the final level, we used (γ−γ′+1)T ′′len = O
(
γk(k/βn)

1
γ−γ′+1 (n/k)

1
γ′(γ−γ′+1)

)
tests, since T ′′len = k(k/βn)

1
γ−γ′+1 (n/k)

1
γ′(γ−γ′+1) . Combining these, we obtain

T = O

(
γkmax

{(n
k

) 1
γ′
,
(k
βn

) 1
γ−γ′+1

(n
k

) 1
γ′(γ−γ′+1)

})
. (3.23)

• Error probability: The concentration bound on Ntotal (see Lemma 3.3.5) holds with

probability 1 − e−Ω(γ′k), and at level l = γ′ − 1, we incur e−Ω(k) error probability. Fur-

thermore, the final stage incurs O(βn) error (conditional) probability. In total, we incur

βn + e−Ω(γ′k) + e−Ω(k) = O(βn) + e−Ω(k) error probability.

• Decoding time: We claim that conditioned on the high-probability events above (in

particular, Ntotal = O
(
γ′k(n/k)1/γ′

)
), the decoding time is O

(
γk(n/k)1/γ′

)
. Since we

consider the word-RAM model, it takes constant time to check whether each defective

node or non-defective node is in a positive or negative test. First considering the levels

l = 2, . . . , γ′ − 1, we reached Ntotal = O
(
γ′k(n/k)1/γ′

)
non-defective nodes and O(γ′k)

defective nodes, which leads to a total of O
(
γ′k(n/k)1/γ′

)
decoding time. At level l = 1,

we iterate through n
M = O

(
k(n/k)1/γ′

)
nodes, and at the final level l = γ′, for each of the

O
(
k(n/k)1/γ′

)
relevant leaf nodes, we perform γ−γ′+ 1 = O(γ) checks of tests for a total

time of O
(
γk(n/k)1/γ′

)
. Combining these terms, we deduce the desired claim.

30

Chapter 4

Algorithm for Size-Constrained

Tests

In the case of size-constrained tests, we again modify the tree structure (see Figure 4.1), and

the main differences from the standard noiseless algorithm [7, 8] are as follows:

• The first level after the root is chosen to have groups of size ρ, since testing even a single

larger-sized group is impossible. In addition, at this level with nodes of size ρ, we test

each node individually, thereby guaranteeing that we only “continue” down the tree for

defective nodes at that level.

• We use non-binary splitting, geometrically decreasing the node size at each level until the

final level with size one. We limit the number of levels to be O(1), whereas binary splitting

would require O(log ρ) levels, and (at least when using a similar level-by-level test design)

would increase the number of tests by an O(log ρ) factor.

• We do not independently place nodes into tests, since doing so would cause a positive

probability of violating the ρ-sized test constraint. Instead, at each level, we create a

random testing sub-matrix with a column weight of exactly one, and a row weight exactly

equal to to ρ
node size . A similar doubly-constant test design was also adopted in [2], but

without the tree structure.

31

• Similarly to the noisy setting in Section 2, we use N independent sequences of tests at

each level, which helps to reduce the error probability.

. We now proceed with a more detailed description.

4.1 Description of the Algorithm

Our algorithm works with a tree structure (see Figure 4.1) similar to previous sections. The

j-th node at the l-th level is again denoted by G(l)
j . A distinction here as that the tree only has

a constant depth, with the final index denoted by C = O(1); hence, the splits are ρ1/C-ary.1

More importantly, there are key differences in the allocation of items to tests, which we describe

as follows.

At each level l, we perform N independent iterations to boost the error probability, as

mentioned above. Within each iteration, we make use of a random matrix, which we write as

Xl =
[
x

(l)
ti

]
∈ {0, 1}#tests×#nodes (the dependence on the iteration number is left implicit), where

#tests = n/ρ and #nodes = n
ρ1−l/C . We pick Xl by sampling uniformly from all n

ρ ×
n

ρ1−l/C

matrices with exactly ρl/C nodes per test (i.e., a row weight of ρl/C), and each node sampled

exactly once (i.e., a column weight of one). These choices ensure that each test contains at

most ρ items, as required. The column weight of one is not strictly imposed by the testing

constraints, but helps in avoiding “bad” events where some nodes are not tested.

With this notation in place, the testing procedure is formally described in Algorithm 5, and

the decoding procedure is described in Algorithm 6.

4.2 Algorithmic Guarantees

We are now ready to state our main result for the case of size-constrained tests. In this case,

we slightly strengthen the assumption k = o(n) to k = n1−Ω(1), and we slightly strengthen the

assumption ρ = o
(
n
k

)
(see the discussion following (1.2)) to ρ = (n/k)1−Ω(1). These additional

1For notational convenience, we assume that ρ1/C is an integer. Since we already assumed that ρ is a power

of two, if ρ = O(1), then it will suffice to let C be that power (see Lemma 4.3.2, in which we handle the case

ρ = O(1) separately). Otherwise, if ρ = ω(1), then the effect of rounding is insignificant since C = O(1).

32

𝑛

𝜌

1

𝜌

1

𝑛/𝜌

X

𝐶′ ×

𝑁 ×

X𝑙 = 𝐶

𝑙 = 0

Figure 4.1: Tree structure of our algorithm. From the second level onwards, the branching

factor is ρ1/C .

restrictions only rule out scaling regimes that are very close to linear (e.g., k = n
logn), and were

similarly imposed in [2].

Theorem 4.2.1. (Algorithmic guarantees) Let S be a (defective) subset of {1, . . . , n} of cardi-

nality k = O
(
n1−ε1

)
for some ε1 ∈ (0, 1] and the test size constraint be ρ = O

(
(n/k)1−ε2

)
for

some ε2 ∈ (0, 1]. For any ζ > 0, there exist choices of C,C ′, N = O(1) such that with O
(
n/ρ

)
tests, the preceding algorithm satisfies the following with probability at least 1−O

(
n−ζ

)
:

• The returned estimate Ŝ equals S;

• The decoding time is O
(
n/ρ

)
;

As summarized in Table 1.2, this is the first algorithm to attain O
(
n/ρ

)
scaling in both the

number of tests and the decoding time.

4.3 Analysis

We start at level l = 0 (see Figure 4.1), where we note that the probability of a non-defective

node being placed in a positive test is zero because each node is placed in its own individual

test. For subsequent levels, we proceed with the following lemma.

Lemma 4.3.1. (Probabilities of Non-Defectives Being in Positive Tests) Under the above test

design, for any given level l = 1, . . . , C and any iteration indexed by {1, . . . , N}, each non-

defective node has probability at most kρ/n of being placed in a positive test.

33

Algorithm 5 Testing procedure for ρ-sized tests

Require: Number of items n, number of defective items k, and maximal test size ρ

1: At level l = 0 (see Figure 4.1), perform an individual test for each node.

2: for each l = 1, . . . , C − 1 (for some constant C chosen later) do

3: for each iteration in {1, . . . , N} (for some constant N ≥ 1) do

4: Pick a new Xl of size n
ρ ×

n
ρ1−l/C , with column weight 1 and row weight ρl/C .

5: for each row t in Xl do

6: Conduct a single test for the mixture of nodes G(l)
j with x

(l)
tj = 1.

7: Set l = C (final level)

8: for each iteration in {1, . . . , C ′} (for some constant C ′ chosen later) do

9: Pick a new XC of size n
ρ × n, with column weight 1 and row weight ρ.

10: for each row t in XC do

11: Conduct a single test for the mixture of (singleton) nodes G(l)
j with x

(l)
tj = 1.

Proof. At any given level l = 1, . . . , C, the probability that a non-defective node u collides (i.e.,

in the same test) with a given defective node v is

#matrices with u & v in test 1

#matrices with v in test 1

(a)
=

(n

ρ1−l/C
−2

ρl/C−2

)∏n/ρ−1
i=1

(n

ρ1−l/C
−iρl/C

ρl/C

)
(n

ρ1−l/C
−1

ρl/C−1

)∏n/ρ−1
i=1

(n

ρ1−l/C
−iρl/C

ρl/C

) (4.1)

=

(n

ρ1−l/C
−2

ρl/C−2

)
(n

ρ1−l/C
−1

ρl/C−1

) (b)
=

ρl/C − 1
n

ρ1−l/C − 1
(4.2)

=
ρ

n

(
ρl/C − 1

ρl/C − ρ/n

)
(c)

≤ ρ

n
, (4.3)

where:

• (a) follows by considering the rows of the matrix Xl (of size n
ρ ×

n
ρ1−l/C , column weight

one, and row weight ρl/C) sequentially to count the number of possible matrices. For the

numerator, we start with the first row, where u and v collide. The number of ways to

fill this row (i.e., assigning items to this test) is the first term in the numerator. For the

remaining n/ρ − 1 rows, in any particular order, the number of ways to fill those rows

(while maintaining column weights of one) is represented by the second product term.

34

Algorithm 6 Decoding procedure for ρ-sized tests

Require: Outcomes of T non-adaptive tests, number of items n, number of defective items k,

and maximal test size ρ

1: Initialize PD(0) = {G(0)
j }

n/ρ
j=1

2: for each group G ∈ PD(0) do

3: if the single test of G is positive then add all children of G to PD(1)

4: for l = 1, . . . , C − 1 do

5: for each group G ∈ PD(l) do

6: if all N tests of G are positive then add all children of G to PD(l+1)

7: Let the estimate Ŝ be the set of elements in PD(C) that are not included in any negative

test at the final level.

8: Return Ŝ

The same analysis is then repeated for the denominator.

• (b) follows by expanding the binomial coefficient in terms of factorials, and then simpli-

fying.

• (c) follows from the fact that ρ/n ≤ 1.

Since there are at most k defective nodes, by the union bound, we get the probability that a

non-defective node collides with any defective node is at most kρ/n.

The following technical lemma will also be used on several occasions.

Lemma 4.3.2. For any k and ρ satisfying k = O
(
n1−ε1

)
for some ε1 ∈ (0, 1] and ρ =

O
(
(n/k)1−ε2

)
for some ε2 ∈ (0, 1], we have the following:

• For sufficiently large C, we have kρ1/C

n/ρ = n−Ω(1);

• For any ζ1 > 0 , we have for sufficiently large C and N that ρ1/C
(kρ
n

)N
= O(n−ζ1).

In addition, if ρ = O(1), then the same holds true for any fixed C > 0, only requiring N to be

sufficiently large in the second part.

35

Proof. For the first part, we write

n/ρ

kρ1/C
=

n/k

ρ1+1/C

(a)
= Ω

((n
k

)ε2− 1−ε2
C

)
(b)
= Ω

(
nε1(ε2− 1−ε2

C
)
)
, (4.4)

where (a) is by substituting ρ = O
(
(n/k)1−ε2

)
and simplifying, and (b) is by substituting

k = O
(
n1−ε1

)
and simplifying. Note that the power is positive for sufficiently large C.

For the second part, we write

ρ1/C
(kρ
n

)N (a)
= O

((n
k

) 1−ε2
C
−ε2N

)
(b)
= O

(
nε1(

1−ε2
C
−ε2N)

)
, (4.5)

where (a) is by substituting ρ = O
(
(n/k)1−ε2

)
and simplifying, and (b) is by substituting

k = O
(
n1−ε1

)
and simplifying. Note that the power can be made arbitrarily negative by

choosing N and C sufficiently large.

For the final part regarding ρ = O(1), we simply note that the two claims reduce to (i)

k
n = n−Ω(1), and (ii)

(
k
n

)N
= O(n−ζ1) for sufficiently large N . Both of these are true since

k = O(n1−ε1).

We will show that throughout the course of the algorithm, for levels l = 1, . . . , C, the size

of the possibly defective set PD(l) remains at O
(
kρ1/C

)
with high probability. We show this

using an induction argument.

4.3.1 Analysis of Levels l = 1, . . . , C − 1

For the base case l = 1, we start by looking at the preceding level l = 0. Each node at level l = 0

is allocated to an individual test, which implies that all nodes in l = 0 are identified correctly.

Hence, only the children of the defective nodes in l = 0 are “explored” further in l = 1. Since

the number of defective nodes in l = 0 is at most k and each node has ρ1/C children, we have

|PD(1)| ≤ kρ1/C .

Consider a non-defective node indexed by i at a given level l > 1 having k′ ≤ k defective

nodes, and let Ai be the indicator random variable of that non-defective node colliding with at

least one defective node in all of its N repetitions. The dependence of these quantities on l is

left implicit. We condition on all of the test placements performed at the earlier levels, writing

El[·] for the conditional expectation. By the inductive hypothesis, we have |PD(l)| = O
(
kρ1/C

)
.

36

Lemma 4.3.3. Under the preceding setup and definitions, if |PD(l)| = O
(
kρ1/C

)
, then we have

El
[∑

i

Ai

]
= O

(
kρ1/C ·

(kρ
n

)N)
. (4.6)

Proof. From Lemma 4.3.1, we know that a given non-defective item i has a probability at most

kρ/n of being placed in a positive test. Since we used N independent test design matrices Xl

to assign i to N tests, we have Pl[Ai] ≤ (kρ/n)N . Hence, we have

El
[∑

i

Ai

]
=
∑
i

El[Ai] =
∑
i

Pl[Ai = 1] ≤
∑
i

(kρ
n

)N
= O

(
kρ1/C ·

(kρ
n

)N)
, (4.7)

where we used the linearity of expectation and the fact that |PD(l)| = O
(
kρ1/C

)
.

Lemma 4.3.4. For any constant ζ1 > 0, there exist choices of C and N such that the following

holds: Conditioned on the l-th level having |PD(l)| = O
(
kρ1/C

)
, the same is true at the (l+1)-th

level with probability 1−O
(
n−ζ1

)
.

Proof. Among the possibly defective nodes at the l-th level, at most k are defective, amounting

to at most kρ1/C children at the next level. Furthermore, by Lemma 4.3.3 and Markov’s

inequality, at most k non-defective nodes are marked as possibly defective, with probability at

least

1−O
(
ρ1/C

(kρ
n

)N)
= 1−O(n−ζ1), (4.8)

where the equality holds for any ζ1 > 0 by suitable choices of C and N (see Lemma 4.3.2).

Thus, this also amounts to at most kρ1/C additional children at the next level. Summing these

together, we have |PD(l+1)| ≤ 2kρ1/C , with probability at least 1−O
(
n−ζ1

)
.

By induction, for any given level l, we have |PD(l)| = O
(
kρ1/C

)
with conditional probability

at least 1−O
(
n−ζ1

)
. Taking a union bound over all C levels (with C = O(1)), the same follows

for all levels simultaneously with probability at least 1−O
(
n−ζ1

)
.

4.3.2 Analysis of the Final Level

Recall that at the final level, we perform C ′n/ρ tests. We study the error probability conditioned

on the high-probability event |PD(C)| = O
(
kρ1/C

)
.

37

For a given non-defective item in a single iteration of the C ′ independent iterations of tests,

by Lemma 4.3.1, the probability of appearing in a positive test is at most kρ/n. Since the

non-defective item participates in C ′ independent tests, the probability of it appearing only in

positive tests is (kρ/n)C
′
. By a union bound over the O

(
kρ1/C

)
non-defective singletons at the

final level, the error probability is upper bounded by

O

(
kρ1/C

(kρ
n

)C′)
= O(n−ζ2), (4.9)

where the equality holds for any ζ2 > 0 and suitably-chosen C and C ′ due to Lemma 4.3.2 (with

C ′ replacing N).

4.3.3 Number of Tests, Error Probability, and Decoding Time

• Number of tests: We used CNn/ρ tests in the first C levels and C ′n/ρ tests in the final

level, which sums up to CNn/ρ+ C ′n/ρ = O(n/ρ).

• Error probability: For each level l, we have |PD(l)| = O
(
kρ1/C

)
with probability 1 −

O
(
n−ζ1

)
. Furthermore, the final level incurs O

(
n−ζ2

)
error probability. This gives us a

total error probability of O
(
n−ζ1 + n−ζ2

)
= O

(
n−ζ

)
, where ζ = min{ζ1, ζ2}. Since we

allowed ζ1 and ζ2 to be arbitrarily large, the same holds for ζ.

• Decoding time: The decoding time is dominated by the test outcome checks in our

decoding procedure. For the first level l = 0, we have |PD(0)| = n/ρ, which is equivalent to

the total number of test outcome checks. For the remaining C−1 levels l ∈ {1, . . . , C−1},

we considered a total of O
(
kρ1/C

)
possibly defective nodes w.h.p., and for each possibly

defective item, we conducted N test outcome checks. This gives us total number of

O
(
kρ1/C

)
test outcome checks. At the final level, for each of the O

(
kρ1/C

)
relevant leaf

nodes, we perform C ′ test outcome checks for a total time of O
(
kρ1/C

)
. Summing these

gives O(n/ρ), since O
(
kρ1/C

)
= o(n/ρ) for a sufficiently large C (refer to (4.4)). Since

it takes O(1) time to check whether each node is in a positive or negative test, we get a

total decoding time of O(n/ρ).

38

Chapter 5

Storage Reductions via Hashing

In order to reduce the storage, we make one modification to each algorithm. Instead of storing

the test outcomes of every node, we interpret the node-to-test mappings at each level (except for

one-to-one mappings) as hash functions. Since the high storage comes from explicitly storing

the corresponding test outcomes of nodes, the key to reducing the overall storage is to use

lower storage hash families. The reduced storage comes at the expense of reduced independence

between different hash values. This drawback has a negligible effect on the guarantees of our

algorithm under the noisy setting and size-constrained tests constraint, as the proofs of Theorem

2.2.1 and Theorem 4.2.1 require only pairwise independence or weaker. However, the drawback

is significant for our algorithm under the finitely divisible items constraint, as our proof of

Theorem 3.2.1 uses full independence.

5.1 Noisy Setting

For levels l = log2 k, . . . , log2 n, we interpret the node-to-test mappings {1, . . . , 2l} → {1, . . . , Ck}

at each level as hash functions.

5.1.1 Algorithmic Guarantees

With the hashing modification to the algorithm, we have the following counterpart to Theorem

2.2.1:

39

Theorem 5.1.1. (Algorithmic guarantees) Let S be a (defective) subset of {1, . . . , n} of car-

dinality k = o(n). For any constants ε > 0 and t > 0 satisfying εt > 1, there exists choices

of C,C ′, N = O(1) and r = O(log k + log log n) such that with O(k log n) tests, the algorithm

adapted from Section 2.1, with a O(1)-wise independent hash family satisfies the following with

probability at least 1−O
((
k log n

k

)1−εt)
:

• The returned estimate Ŝ equals S;

• The decoding time is O
(
Thash

(
k log n

k

)1+ε)
, where Thash is the evaluation time for one

hash value;

• The storage required is O(Shash log n+ k log2 n) bits, where Shash is the number of bits of

storage required for one hash function.

We briefly discuss some explicit values that can be attained for Thash and Shash. Suppose that

all variables are powers of two, we can adopt the classical approach of Wegman and Carter [33],

and consider a random polynomial over the Galois field GF(2m), where m ∈ {log2 k, . . . , log2 n}

(depending on the level). In this case, one attains d-wise independence by storing d elements

of GF(2m) (or O(d log n) bits), and performing O(d) additions and multiplications in GF(2m)

to evaluate the hash. As a result, with d = 2, we get

Thash = O(1) and Shash = O(log n), (5.1)

under the assumption that operations in GF(2m) can be performed in constant time. Hence,

Theorem 5.1.1 gives O
(
(k log n)1+ε

)
decoding time and O(k log2 n) storage.

5.1.2 Outline of Analysis

The lengths of the test sequences remain the same, which implies that there are no changes to the

number of tests required. Since the hash family is (at least) pairwise independent, our analysis

of the error probability for Theorem 2.2.1 still holds. This implies that there is no change to the

scaling of the error probability either. The analysis of the decoding time is also similar to that of

Theorem 2.2.1, except that each test outcome check (i.e., a hash) takes Thash time to compute.

40

Hence, the decoding time is O
(
Thash

(
k log n

k

)1+ε)
. The main change is in the storage. Recalling

that we use N = O(1) hashes at each level except the last, and C ′N log2 n = O(log n) hashes

at the final level, for a total of O
(

log2
n
k

)
+O(log n) = O(log n) hashes, requiring O(Shash log n)

bits of storage. In addition, for any level l, we know that |PD(l)| = O(k log n) w.h.p. Hence,

the storage required for the possibly defective set is O(k log n) integers, or O(k log2 n) bits. The

total storage required is O(Shash log n+ k log2 n) bits.

5.2 Finitely Divisible Items

We make a slight modification to the algorithm: At the second last level l = γ′ − 1, we set the

length of our test sequence to Ck(n/k)1/γ′ (i.e., T ′len = Tlen). With this modification, for levels

l = 2, . . . , γ′−1, we interpret the node-to-test mappings
{

1, . . . , k
(
n
k

)l/γ′}→ {
1, . . . , Ck

(
n
k

)1/γ′}
at each level as hash functions. Similarly, for the final level, we interpret the node-to-test

mappings {1, . . . , n} → {1, . . . , T ′′len} as hash functions

5.2.1 Algorithmic Guarantees

With the hashing modification to the algorithm, we have the following counterpart to Theorem

3.2.1:

Theorem 5.2.1. (Algorithmic guarantees) Let S be a fixed (defective) subset of {1, . . . , n} of

cardinality k, let γ = o(log n) (with γ ≥ 3) be the maximum number of times each item can be

tested, fix γ′ ∈ {3, . . . , γ}, and any function βn decaying as n increases. There exists a choice

of Tlen, T ′len, and T ′′len such that with

T = O

(
γkmax

{(n
k

) 1
γ′
,
(k
βn

) 1
γ−γ′+1

(n
k

) 1
γ′(γ−γ′+1)

})
, (5.2)

the algorithm adapted from Section 3.1, with a O(γ)-wise independent hash family, yields the

following with probability at least 1−O(γ/k + βn):

• The returned estimate Ŝ equals S;

• The decoding time is O
(
Thashγk(n/k)1/γ′

)
, where Thash is the evaluation time for one hash

value;

41

• The storage required is O
(
k(n/k)1/γ′ log n+Shashγ

)
bits, where Shash is the number of bits

of storage required for one hash function.

We conduct a one-to-one map for l = 1 and start the hashing from the second level on-

wards. For the other levels, we consider a random polynomial over the Galois field GF(2m) (see

paragraph above (5.1) for more details), where m ∈
{

log2

(
k
(
n
k

)2/γ′)
, . . . , log2 n

}
(depending

on the level). By storing O(γ) elements of GF(2m) (or O(γ log n) bits), we attain O(γ)-wise

independence, and get

Thash = O(γ) and Shash = O(γ log n), (5.3)

under the assumption that operations in GF(2m) can be performed in constant time. Hence,

Theorem 5.2.1 gives O
(
γ2k(n/k)1/γ′

)
decoding time and O

((
k(n/k)1/γ′ + γ2

)
log n

)
bits of

storage. Minor improvements could be made to the scaling of decoding time and storage by

considering the multi-point evaluation of polynomials as in [7].

5.2.2 Analysis

At l = 1, the probability of a non-defective node being placed in a positive test is zero because

each node is placed in its own individual test. We will show that throughout the course of the

algorithm for levels l = 2, . . . , γ′, the size of our PD(l) set remains at O
(
k(n/k)1/γ′

)
with high

probability. We will show this using an induction argument.

For the base case l = 2, we start by looking at the preceding level. Each node in the

previous level l = 1 is allocated to an individual test, which implies that all nodes in l = 1

are identified correctly. Hence, only the children of the defective nodes in l = 1 are “explored”

further in l = 2. Since the number of defective nodes in l = 1 is at most k and each node has

M1/(γ′−1) = (n/k)1/γ′ children, we have |PD(2)| ≤ k(n/k)1/γ′ .

Consider two non-defective nodes indexed by u and v at a given level l having k′ ≤ k

defective nodes. Let Au and Av be the indicator random variables of u and v colliding with

any defective node respectively. The dependence of these quantities on l is left implicit. We

condition on all of the test placements performed at the earlier levels, accordingly El[·] and

42

Varl[·] for the conditional expectation and conditional variance. By the inductive hypothesis,

we have |PD(l)| = O
(
k(n/k)1/γ′

)
.

Lemma 5.2.2. Under the preceding setup and definitions, if |PD(l)| = O
(
k(n/k)1/γ′

)
, then we

have

El
[∑

u

Au

]
= O(k) and Varl

[∑
u

Au

]
= O(k), (5.4)

where the sums are over all non-defective nodes in PD(l).

Proof. For ease of notation, we leave the subscripts (·)l implicit throughout the proof, but the

associated conditioning is understood to apply to all probabilities, expectations, variance terms,

and so on.

We first prove E
[∑

uAu
]

= O(k). The event Au occurs if u is hashed into the same

test as any of the k′ ≤ k defective nodes. Since we are hashing into
{

1, . . . , Ck(n/k)1/γ′
}

and the hash family is (at least) pairwise independent, each collision occurs with probability

(1/(Ck))(n/k)−1/γ′ . Hence, by the union bound over all k′ defective nodes, u is in a positive

test with probability at most (1/C)(n/k)−1/γ′ . We then have

El
[∑

u

Au

]
=
∑
u

E[Au] =
∑
u

P[Au] ≤
∑
u

1

C

(n
k

)− 1
γ′

= O

(
k
(n
k

) 1
γ′
)

1

C

(n
k

)− 1
γ′

= O(k).

(5.5)

As for Varl
[∑

u

]
, we first characterize Cov[Au, Av], writing

Cov[Au, Av] = E[Au, Av]− E[Au]E[Av] (5.6)

= P[Au ∩Av]− P[Au]P[Av] (5.7)

(a)
= P[Au] + P[Av]− P[Au ∪Av]− P[Au]P[Av], (5.8)

where (a) is by the inclusion-exclusion principle. We proceed by bounding P[Au] (the same

bound holds for P[Av]) and P[Au ∪Av] separately.

Probability of the individual event: Fix a non-defective node u. Let h(·) denote the

random hash function with output values in
{

1, . . . , Ck(n/k)1/γ′
}

, and for each defective node

43

indexed by i ∈ {1, . . . , k′}, let Bi be the “bad” event that h(i) = h(u). We apply the inclusion-

exclusion principle, which is written in terms of the following quantities for j = 1, . . . , k′:

Tj =
∑

1≤i1<···<ij≤k′
P[Bi1 ∩ · · · ∩Bij]. (5.9)

If the hash function is (j + 1)-wise independent, this simplifies to

Tj =

(
k′

j

)(
1

Ck

(n
k

)− 1
γ′
)j
. (5.10)

Hence, if the hash function is (jmax + 1)-wise independent for some jmax, then the inclusion-

exclusion principle gives

P[Au] = P
[⋃
i=1,...,k′

Bi

]
≤

jmax∑
j=1

(−1)j+1Tj (5.11)

=

jmax∑
j=1

(−1)j+1

(
k′

j

)(
1

Ck

(n
k

)− 1
γ′
)j
, (5.12)

for odd-valued jmax, and the reverse inequality for the even-valued jmax. Using the fact that∑k′

j=1(−1)j+1
(
k′

j

)(
1
Ck

(
n
k

)1/γ′)j
= 1−

(
1−

(
1
Ck

(
n
k

)1/γ′)k′
, we can write (5.12) as

P[Au] ≤ 1−
(

1− 1

Ck

(n
k

)− 1
γ′
)k′
−

k′∑
j=jmax+1

(−1)j+1

(
k′

j

)(
1

Ck

(n
k

))j
. (5.13)

The final term can then be bounded as follows in absolute value:∣∣∣∣ k′∑
j=jmax+1

(−1)j+1

(
k′

j

)(
1

Ck

(n
k

))j∣∣∣∣ ≤ k′∑
j=jmax+1

(
k′

j

)(
1

Cd

(n
k

))j
(5.14)

(a)

≤
∞∑

j=jmax+1

(
1

C

(n
k

))j
(5.15)

(b)
=

(
1
C

(
n
k

)−1/γ′)jmax+1

1− 1
C

(
n
k

)−1/γ′
(5.16)

(c)

≤
(

1

C

(n
k

)− 1
γ′
)jmax

, (5.17)

where (a) uses
(
k′

j

)
≤ (k′)j and k′ ≤ k, (b) applies the geometric series formula, and (c) holds for

C ≥ 2(n/k)−1/γ′ (i.e., any positive integer C). We can upper bound (5.17) by any target value

δ provided that jmax ≥ (log δ)/
(

1
C

(
n
k

)−1/γ′)
. Recall also that (5.13) is reversed for even-valued

44

jmax, so loosening the preceding requirement to jmax ≥
⌈
(log δ)/ log

(
1
C

(
n
k

)−1/γ′)⌉
+ 1 gives

1−
(

1− 1

Ck

(n
k

)− 1
γ′
)k′
− δ ≤ P[Au] ≤ 1−

(
1− 1

Ck

(n
k

)− 1
γ′
)k′

+ δ. (5.18)

Since u is arbitrary, the same bound also holds for P[Av].

Probability of the union of two events: We can decompose P[Au ∪Av] as follows:

P[Au ∪Av] =

(
1− 1

Ck

(n
k

)− 1
γ′
)
P[Au ∪Av|h(u) 6= h(v)]

+
1

Ck

(n
k

)− 1
γ′ P[Au ∪Av|h(u) = h(v)] (5.19)

= P[Au ∪Av|h(u) 6= h(v)] +
1

Ck

(n
k

)− 1
γ′ (P[Au ∪Av|h(u) = h(v)]

− P[Au ∪Av|h(u) 6= h(v)]
)
. (5.20)

To simplify (5.20), we look at the probability terms separately. We first focus on the case

h(u) = h(v). Similar to the above, let B′i be the “bad” event that h(i) = h(u) (and hence also

equals h(v)), and define

T ′j =
∑

1≤i1<···<ij≤k′
P[B′i1 ∩ · · · ∩B

′
ij |h(u) = h(v)]. (5.21)

If the hash function is (j + 2)-wise independent, this simplifies to

T ′j =

(
k′

j

)(
1

Ck

(n
k

)− 1
γ′
)
, (5.22)

which is the same as (5.10). Following a similar argument from (5.11) to (5.18), we find that

if (i) C ≥ 2(n/k)−1/γ′ , (ii) jmax ≥
⌈
(log δ)/ log

(
1
C

(
n
k

)−1/γ′)⌉
+ 1, and (iii) the hash function is

(jmax + 2)-wise independent, then the following holds:

1−
(

1− 1

Ck

(n
k

)− 1
γ′
)k′
− δ ≤ P[Au ∪Av|h(u) = h(v)] ≤ 1−

(
1− 1

Ck

(n
k

)− 1
γ′
)k′

+ δ (5.23)

Next, we focus on the case h(u) 6= h(v). Similar to the above, let B′′i be the “bad” event

that h(i) ∈ {h(u), h(v)}, and define

T ′j =
∑

1≤i1<···<ij≤k′
P[B′′i1 ∩ · · · ∩B

′′
ij |h(u) 6= h(v)]. (5.24)

If the hash function is (j + 2)-wise independent, this simplifies to

T ′j =

(
k′

j

)(
2

Ck

(n
k

)− 1
γ′
)
, (5.25)

45

where the factor of two comes from the possibility of colliding with either u or v. Following

the same argument from (5.11) to (5.18), we find that if (i) C ≥ 4(n/k)−1/γ′ , (ii) jmax ≥⌈
(log δ)/ log

(
2
C

(
n
k

)−1/γ′)⌉
+ 1, and (iii) the hash function is (jmax + 2)-wise independent, then

the following analog of (5.18) holds:

1−
(

1− 2

Ck

(n
k

)− 1
γ′
)k′
− δ ≤ P[Au ∪Av|h(u) 6= h(v)] ≤ 1−

(
1− 2

Ck

(n
k

)− 1
γ′
)k′

+ δ (5.26)

With the simplified probabilities, we get the following:

P[Au ∪Av|h(u) = h(v)]− P[Au ∪Av|h(u) 6= h(v)]

= 1−
(

1− 1

Ck

(n
k

)− 1
γ′
)k′

+O(δ)−
(

1−
(

1− 2

Ck

(n
k

)− 1
γ′
)k′

+O(δ)

)
(5.27)

=

(
1− 2

Ck

(n
k

)− 1
γ′
)k′
−
(

1− 1

Ck

(n
k

)− 1
γ′
)k′

+O(δ) (5.28)

(a)
=

(
1−O

((n
k

)− 1
γ′
))
−
(

1−O
((n

k

)− 1
γ′
))

+O(δ) (5.29)

(b)
= O

((n
k

)− 1
γ′
)
, (5.30)

where (a) applies a first order Taylor expansion, and (b) assumes that δ = o((n/k)−1/γ′). Using

(5.26), (5.30), and (5.20), we deduce

P[Au ∪Av] = 1−
(

1− 2

Ck

(n
k

)− 1
γ′
)k′

+O(δ)− 1

Ck

(n
k

)− 1
γ′
O

((n
k

)− 1
γ′
)

(5.31)

= 1−
(

1− 2

Ck

(n
k

)− 1
γ′
)k′

+O(δ)−O
(

1

k

(n
k

)− 2
γ′
)
. (5.32)

Combining and simplifying: Setting δ = (1/k)(n/k)−2/γ′ and

jmax =

⌈
log δ

log
(

1
C

(
n
k

)−1/γ′)
⌉

+ 1 = O

(
log
(

1
k

(
n
k

)−2/γ′)
log
(

1
C

(
n
k

)−1/γ′)
)

(5.33)

= O

(
log k + 2

γ′ log
(
n
k

)
logC + 1

γ′ log
(
n
k

)) = O
(γ′ log k

log n− log k

)
(5.34)

(a)
= O(γ′) = O(γ), (5.35)

where (a) where k = o(n) implies that we can only have either log k = O(log n) or log k =

o(log n). In both cases, we have log k
logn−log k = O(1). Combining the this result with the above

46

findings from (5.13) and (5.32), we deduce that for a O(γ)-wise independent hash,

P[Au] = 1−
(

1− 1

Ck

(n
k

)− 1
γ′
)k′

+O

(
1

k

(n
k

)− 2
γ′
)

(5.36)

P[Au ∪Av] = 1−
(

1− 2

Ck

(n
k

)− 1
γ′
)k′

+O

(
1

k

(n
k

)− 2
γ′
)

(5.37)

The idea in the following is to approximate 1 − w
Ck(n/k)1/γ′ ≈ exp

(
− w

Ck(n/k)1/γ′
)

for w = 1, 2,

and substitute into (5.8). To make this more precise, we use the fact that k′ ≤ k to write the

following for w = 1:(
1− 1

Ck

(n
k

)− 1
γ′
)k′

=

(
exp

(
− 1

Ck

(n
k

)− 1
γ′

+O

(
1

k2

(n
k

)− 2
γ′
)))k′

(5.38)

= exp

(
− k′

Ck

(n
k

)− 1
γ′

+O

(
1

k

(n
k

)− 2
γ′
))

(5.39)

(a)
= exp

(
− k′

Ck

(n
k

)− 1
γ′
)(

1 +O

(
1

k

(n
k

)− 2
γ′
))

(1 + o(1)) (5.40)

= exp

(
− k′

Ck

(n
k

)− 1
γ′
)

+O

(
1

k

(n
k

)− 2
γ′
)
, (5.41)

where (a) uses ex = (1 + x)(1 + o(1)) when x = o(1). Applying a similar argument to 1 −

2
Ck(n/k)1/γ′ and substituting into (5.8), we obtain

Cov[Au, Av] = 2

(
1− exp

(
− k′

Ck

(n
k

)− 1
γ′
))
−
(

1− exp

(
− 2k′

Ck

(n
k

)− 1
γ′
))

−
(

1− exp

(
− k′

Ck

(n
k

)− 1
γ′
))2

+O

(
1

k

(n
k

)− 2
γ′
)

(5.42)

= O

(
1

k

(n
k

)− 2
γ′
)
, (5.43)

since the first three terms cancel upon expanding the square. The proof is concluded by writing

Var
[∑

u

Au

]
=
∑
u

Var[Au] +
∑
u6=v

Cov[Au, Av] (5.44)

(a)
= O

(
k
(n
k

) 1
γ′ ·
(n
k

)− 1
γ′
)

+ 2

(
k(n/k)1/γ′

2

)
O

(
1

k

(n
k

)− 2
γ′
)

(5.45)

= O(k), (5.46)

where (a) is because there are O
(
k(n/k)1/γ′

)
values of u by assumption, and Var[Au] ≤ P[Au] =

O
(
(n/k)−1/γ′

)
.

Given Lemma 5.2.2, we easily deduce the following.

47

Lemma 5.2.3. For a sufficiently large C, conditioned on |PD(l)| = O
(
k(n/k)1/γ′

)
, the same is

true for |PD(l+1)| with probability 1−O(k−1).

Proof. Among the possibly defective nodes at the l-th level, at most k are defective, amounting

to at most k(n/k)1/γ′ children at the next level. By Lemma 5.2.2 and Chebyshev’s inequality,

with probability 1 − O(k−1), O(k) non-defective nodes are marked as possibly defective, thus

also amount to O
(
k(n/k)1/γ′

)
at the next level, for a total of O

(
k(n/k)1/γ′

)
.

Error Probability: By induction, for all levels l, we have |PD(l)| = O
(
k(n/k)1/γ′

)
with

probability at least 1− O(k−1). Taking union bound over all O(γ) levels, the same follows for

all levels simultaneously with probability 1−O(γ/k).

Recall that by choosing T ′′len = k(k/βn)
1

γ−γ′+1 (n/k)
1

γ′(γ−γ′+1) , we attain βn error probability

at the final level. The analysis of the final level in Section 3.3.2 did not rely on h(·) being a

fully independent hash function, but rather, only relied on the condition of collision probability

k/T ′′len between any given two nodes. Since this condition still holds for any pairwise (or higher)

independent hash family, we immediately deduce the same conclusion: Conditioned on the final

level having O
(
k(n/k)1/γ′

)
nodes marked as possibly defective, we attain βn error probability.

Combining the above, we get a total error probability of O(γ/k + βn), which is in o(1) if

γ/k = o(1).

Number of Tests, Decoding Time, and Storage:

• Number of tests: Despite decreasing T ′len, the scaling of tests remains the same as the

fully independent case, which is

T = O

(
γkmax

{(n
k

) 1
γ′
,
(k
βn

) 1
γ−γ′+1

(n
k

) 1
γ′(γ−γ′+1)

})
. (5.47)

• Decoding time: Since we reached O
(
γ′k(n/k)1/γ′

)
nodes in the first γ′ − 1 levels and

O
(
k(n/k)1/γ′

)
nodes in the final level, we get the same scaling as the fully indepen-

dent case on the number of times we check the test outcome of each node. In this

case, each check (hash) takes Thash time to compute. Hence, the total decoding time

is O
(
Thashγk(n/k)1/γ′

)
. Note that we assume that the one-to-one node-to-test mapping

function at l = 1 takes O(1) time per map.

48

• Storage: We use one hash at each level except the last, and O(γ) hashes at the final

level, for a total of O(γ) hashes, requiring (Shashγ). In addition, under the high proba-

bility event that there are O
(
k(n/k)1/γ′

)
possibly defective nodes at each level. Hence,

the storage of the possibly defective set requires O
(
k(n/k)1/γ′

)
integers in {1, . . . , n}, or

O
(
k(n/k)1/γ′ log n

)
bits. Summing the storage up, we attain O

(
k(n/k)1/γ′ log n+Shashγ

)
bits of total storage. Note that we assume that the one-to-one node-to-test mapping

function at l = 1 takes O(1) storage.

5.3 Size-Constrained Tests

For levels l = 1, . . . , C, we interpret the node-to-test mappings
{

1, . . . , n/ρ1−l/C}→ {1, . . . , n/ρ}
at each level as hash functions. Since nodes are allocated to their tests using a matrix with

fixed row and column weights, we take extra care to ensure that these constraints are satisfied

by our hash function. To achieve this we first define the following:

Definition 5.3.1. (Approximately pairwise-independent permutation) Fix m, and let π :

{1, . . . ,m} → {1, . . . ,m} be a random permutation. We say that π is approximately pairwise-

independent if, for any i, i′ ∈ {1, . . . ,m} and any integer t, we have P[|π(i)−π(i′)| ≤ t] ≤ 4t/m.

It is well known that such permutations exist in the form of a simple modulo-m multiplica-

tion; we will specifically use the following lemma from [34].

Lemma 5.3.1. (Choice of permutation [34, Lemma 3.2]) Let m be a power of two, and define

π(i) = σ · i, where σ is chosen uniformly at random from the odd numbers in {1, . . . ,m}. Then

π is an approximately pairwise-independent random permutation.

5.3.1 Algorithmic Guarantees

With the hashing modification to the algorithm, we have the following counterpart to Theorem

4.2.1:

Theorem 5.3.2. (Algorithmic guarantees) Let S be a (defective) subset of {1, . . . , n} of cardi-

nality k = O
(
n1−ε1

)
for some ε1 ∈ (0, 1] and the test size constraint be ρ = O

(
(n/k)1−ε2

)
for

49

some ε2 ∈ (0, 1]. For any ζ > 0, there exists a choice of C,C ′, N = O(1) such that with O
(
n/ρ

)
tests, the algorithm adapted from Section 4.1, with an approximately pairwise-independent per-

mutation, satisfies the following with probability at least 1−O
(
n−ζ

)
:

• The returned estimate Ŝ equals S;

• The decoding time is O
(
Thashn/ρ

)
, where Thash is the evaluation time for one hash value;

• The storage required is O(Shash + n/ρ) bits, where Shash is the number of bits of storage

required for one hash function.

Using an approximately pairwise-independent permutation, we discuss some explicit values

that can be attained for Thash and Shash. For l = 0, assuming that nodes are placed into tests in

an ordered manner (i.e., first node goes to the first test and so on), we can get the test outcome

of a given i-th node in O(1) time by checking the i-th test. At each level l ∈ {1, . . . , C}, we

desire a hash function hl :
{

1, . . . , n/ρ1−l/C} → {1, . . . , n/ρ} such at each bucket (test) has a

load (number of nodes) of exactly ρl/C . This can be achieved by first applying the permutation

in Lemma 5.3.1 and then truncating the last (l/C) log2 ρ bits of the permutation value. As

a result, we get Thash = O(1) and Shash = O(1), which together with Theorem 5.3.2 gives us

O(n/ρ) decoding time and O(n/ρ) storage.

5.3.2 Outline of Analysis

We start by noting that the length of test sequences remain the same, which implies that there

are no changes to the number of tests required. We introduce a corollary below before studying

the changes with the error probability, decoding time, and storage.

Corollary 5.3.2.1. For each level l ∈ {1, . . . , C}, for any i, i′ ∈ {1, . . . , n/ρ1−l/C}, we have

P[hl(i) = hl(i
′)] ≤ 4ρ/n.

Proof. Recall that hl :
{

1, . . . , n/ρ1−l/C}→ {1, . . . , n/ρ}. For any i, i′ ∈ {1, . . . , n/ρ1−l/C}, we

have

P[hl(i) = hl(i
′)]

(a)
= P[|π(i)− π(i′)| ≤ ρl/C]

(b)

≤ 4ρ

n
, (5.48)

50

where (a) is because if i and i′ are in the same bucket, then all their bits except the last

(l/C) log2 ρ bits are the same. Hence, π(i) and π(i′) can be at most ρl/C (bucket size) apart.

(b) is by applying Definition 5.3.1.

For l = 1, . . . , C, we use the hash function introduced above, where we interpret the node-

to-test mappings {1, . . . , n/ρ1−l/C} → {1, . . . , n/ρ} as hash functions. By Corollary 5.3.2.1, we

see that the probability of a non-defective node colliding with a defective node is still in O(ρ/n).

By union bound over all defective nodes (k is the worst case), the probability of a non-defective

node being placed in a positive test is O(kρ/n), which has the same scaling as the probability

presented in Lemma 4.3.1. Hence, the scaling of the error probability remains unchanged.

The analysis of the decoding time is similar to that of Theorem 4.2.1, but each hash takes

Thash time to compute. Hence, the decoding time is O
(
Thashn/ρ

)
.

Regarding the storage, we use N = O(1) hashes at each level (except l = 0 and l = C), and

C ′ = O(1) hashes at the final level, for a total of O(1) hashes, requiring O(Shash) storage. In

addition, under the high probability event that there are O(kρ1/C) possibly defective nodes at

each level, their storage requires O(kρ1/C) integers, or O(kρ1/C log n) = O(n/ρ) bits (refer to

(4.4) to see why O(kρ1/C) = O(n/ρ)). Note that we can ignore the log n factor because it is

negligible in the power of n as n→∞, which is used for comparison in (4.4). Hence, the total

storage requires O(Shash + n/ρ) bits.

51

Chapter 6

Conclusion

We have provided fast splitting algorithms for noisy and sparsity-constrained group testing,

significantly improving the decoding times of previous works while maintaining optimality or

near-optimality in the scaling of the number of tests. Two potentially interesting directions for

further work include:

• Develop a sublinear-time algorithm for the finitely-divisible setting that attains the stronger

bound of the DD algorithm [29, 1], rather than only that of the COMP algorithm (see

Table 1.2 and Figure 3.2).

• Handle the case that tests are simultaneously noisy and size-constrained. This appears to

be non-trivial, as our variations for the noisy and size-constrained settings currently do

not “fit together” nicely; the former looks ω(1) levels down the tree, while the latter uses

a tree of depth O(1).

52

References

O. Gebhard, M. Hahn-Klimroth, O. Parczyk, M. Penschuck, M. Rolvien, J. Scarlett, and
N. Tan. Near optimal sparsity-constrained group testing: improved bounds and algorithms.
https://arxiv.org/abs/2004.11860, 2020.

V. Gandikota, E. Grigorescu, S. Jaggi, and S. Zhou. Nearly optimal sparse group testing.
IEEE Trans. Inf. Theory, 65(5):2760 – 2773, 2019. doi: 10.1109/TIT.2019.2891651.

M. Aldridge, O. Johnson, and J. Scarlett. Group testing: An information theory perspective.
Found. Trend. Comms. Inf. Theory, 15(3–4):196–392, 2019.

C. A. Hogan, M. K. Sahoo, and B. A. Pinsky. Sample Pooling as a Strategy to Detect
Community Transmission of SARS-CoV-2. JAMA, 323(19):1967–1969, 05 2020. doi: 10.1001/
jama.2020.5445. URL https://doi.org/10.1001/jama.2020.5445.

C. M. Verdun, T. Fuchs, P. Harar, D. Elbrächter, D. S. Fischer, J. Berner, P. Grohs, F. J.
Theis, and F. Krahmer. Group testing for SARS-CoV-2 allows for up to 10-fold efficiency
increase across realistic scenarios and testing strategies. medRxiv, 2020. doi: 10.1101/2020.04.
30.20085290.

I. Yelin, N. Aharony, E. Shaer-Tamar, A. Argoetti, E. Messer, D. Berenbaum, E. Shafran,
A. Kuzli, N. Gandali, T. Hashimshony, Y. Mandel-Gutfreund, M. Halberthal, Y. Geffen,
M. Szwarcwort-Cohen, and R. Kishony. Evaluation of COVID-19 RT-qPCR test in multi-
sample pools. medRxiv, 2020. doi: 10.1101/2020.03.26.20039438.

M. Cheraghchi and V. Nakos. Combinatorial group testing and sparse recovery schemes with
near-optimal decoding time. https://arxiv.org/abs/2006.08420, 2020.

E. Price and J. Scarlett. A fast binary splitting approach to non-adaptive group testing. In
RANDOM, 2020.

R. Dorfman. The detection of defective members of large populations. Ann. Math. Stats., 14
(4):436–440, 1943.

C. L. Chan, S. Jaggi, V. Saligrama, and S. Agnihotri. Non-adaptive group testing: Explicit
bounds and novel algorithms. IEEE Trans. Inf. Theory, 60(5):3019–3035, May 2014. ISSN
0018-9448.

M. Aldridge, L. Baldassini, and O. Johnson. Group testing algorithms: Bounds and sim-
ulations. IEEE Trans. Inf. Theory, 60(6):3671–3687, June 2014. ISSN 0018-9448. doi:
10.1109/TIT.2014.2314472.

J. Scarlett and V. Cevher. Phase transitions in group testing. In Proc. ACM-SIAM Symp.
Disc. Alg. (SODA), 2016.

53

https://arxiv.org/abs/2004.11860
https://doi.org/10.1001/jama.2020.5445
https://arxiv.org/abs/2006.08420

O. Johnson, M. Aldridge, and J. Scarlett. Performance of group testing algorithms with near-
constant tests-per-item. IEEE Trans. Inf. Theory, 65(2):707–723, Feb. 2019.

W. H. Bay, E. Price, and J. Scarlett. Optimal non-adaptive probabilistic group testing requires
Θ(min{k log n, n}) tests. https://arxiv.org/abs/2006.01325, 2020.

M. Malyutov. The separating property of random matrices. Math. Notes Acad. Sci. USSR, 23
(1):84–91, 1978. ISSN 0001-4346. doi: 10.1007/BF01104893.

J. Scarlett and V. Cevher. Near-optimal noisy group testing via separate decoding of items.
IEEE Trans. Sel. Topics Sig. Proc., 2(4):625–638, 2018.

O. Gebhard, O. Johnson, P. Loick, and M. Rolvien. Improved bounds for noisy group testing
with constant tests per item. https://arxiv.org/abs/2007.01376, 2020.

H. A. Inan, P. Kairouz, M. Wootters, and A. Özgür. On the optimality of the Kautz-Singleton
construction in probabilistic group testing. IEEE Trans. Inf. Theory, 65(9):5592–5603, Sept.
2019.

H. A. Inan and A. Ozgur. Strongly explicit and efficiently decodable probabilistic group testing.
In IEEE Int. Symp. Inf. Theory, 2020.

J. Scarlett and O. Johnson. Noisy non-adaptive group testing: A (near-)definite defectives
approach. IEEE Trans. Inf. Theory, PP:1–1, 01 2020. doi: 10.1109/TIT.2020.2970184.

S. Cai, M. Jahangoshahi, M. Bakshi, and S. Jaggi. Efficient algorithms for noisy group testing.
IEEE Trans. Inf. Theory, 63(4):2113–2136, 2017. doi: 10.1109/TIT.2017.2659619.

K. Lee, R. Pedarsani, and K. Ramchandran. SAFFRON: A fast, efficient, and robust framework
for group testing based on sparse-graph codes. In IEEE Int. Symp. Inf. Theory, 2016.

S. Bondorf, B. Chen, J. Scarlett, H. Yu, and Y. Zhao. Sublinear-time non-adaptive group
testing with O(k log n) tests via bit-mixing coding. IEEE Trans. Inf. Theory, pages 1–1, 2020.

M. Cheraghchi. Noise-resilient group testing: Limitations and constructions. In Int. Symp.
Found. Comp. Theory, pages 62–73, 2009.

P. Indyk, H. Q. Ngo, and A. Rudra. Efficiently decodable non-adaptive group testing. In
ACM-SIAM Symp. Disc. Alg. (SODA), 2010.

H. Q. Ngo, E. Porat, and A. Rudra. Efficiently decodable error-correcting list disjunct matrices
and applications. In Int. Colloq. Automata, Lang., and Prog., 2011.

H. A. Inan, P. Kairouz, and A. Ozgur. Sparse combinatorial group testing. IEEE Trans. Inf.
Theory, 66(5):2729–2742, 2020.

N. Tan and J. Scarlett. Near-optimal sparse adaptive group testing. In IEEE Int. Symp. Inf.
Theory, 2020.

N. Tan and J. Scarlett. Improved bounds and algorithms for sparsity-constrained group testing.
https://arxiv.org/abs/2004.03119, 2020.

F. K. Hwang. A method for detecting all defective members in a population by group testing.
J. Amer. Stats. Assoc., 67(339):605–608, 1972.

54

https://arxiv.org/abs/2007.01376
https://arxiv.org/abs/2004.03119

J.-C. Aval. Multivariate fuss–catalan numbers. Discrete Mathematics, 308(20):4660 – 4669,
2008.

R. Vershynin. Introduction to the non-asymptotic analysis of random matrices. Compressed
Sensing: Theory and Applications, page 210–268, 2010. doi: 10.1017/CBO9780511794308.006.

M. N. Wegman and J. Carter. New hash functions and their use in authentication and set
equality. Journal of Computer and System Sciences, 22(3):265 – 279, 1981. ISSN 0022-0000.
doi: https://doi.org/10.1016/0022-0000(81)90033-7.

P. Indyk and M. Kapralov. Sample-optimal fourier sampling in any fixed dimension. In IEEE
Symp. Found. Comp. Sci. (FOCS), 2014.

55

	Title
	Abstract
	Acknowledgement
	List of Figures
	List of Tables
	Introduction
	Problem Setup
	Noisy Setting
	Sparsity-Constrained Setting

	Related Work
	Summary of Results

	Algorithm for the Noisy Setting
	Description of the Algorithm
	Algorithmic Guarantees
	Analysis
	Analysis of Levels l=log2k,…,log2n-1
	Analysis of the Final Level
	Number of Tests, Error Probability, and Decoding Time

	Algorithm for Finitely Divisible Items
	Description of the Algorithm
	Algorithmic Guarantees
	Analysis
	Bounding Ntotal
	Analysis of the Final Level
	Number of Tests, Error Probability, and Decoding Time

	Algorithm for Size-Constrained Tests
	Description of the Algorithm
	Algorithmic Guarantees
	Analysis
	Analysis of Levels l=1,…,C-1
	Analysis of the Final Level
	Number of Tests, Error Probability, and Decoding Time

	Storage Reductions via Hashing
	Noisy Setting
	Algorithmic Guarantees
	Outline of Analysis

	Finitely Divisible Items
	Algorithmic Guarantees
	Analysis

	Size-Constrained Tests
	Algorithmic Guarantees
	Outline of Analysis

	Conclusion

