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Introduction

• Goal: Identify a subset of defective items within a larger set of items based

on pooled tests.

• Can help to reduce the #tests, which is ideal when tests are costly.

• Some applications:

I Medical testing (e.g., COVID-19)

I Data science

I Communication protocols
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Setup

• Population of n items labelled {1, . . . , n}.

• Defective set S ⊂ {1, . . . , n}, where k = |S| = o(n).

• We consider the following settings:

I Non-adaptive: Test pools are designed in advance (makes parallel

implementation of the tests more viable).

I Noiseless: Get a +ve test outcome if there is least one defective item, and a

-ve outcome if there is no defective item.

I For-each recovery: The algorithm is allowed vanishing error probability, i.e.,

P
[
Ŝ 6= S

]
→ 0 as n→∞.
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Noise Model

Previously, we considered the following constraints under the noiseless setting:

• bounded tests-per-item;

• bounded items-per-test.

In this talk, we study a symmetric noise model (with no sparsity constraints):

+ Our result holds under any asymmetric noise model where 0→ 1 and 1→ 0

flips both have probability at most constant p (e.g., Z-channel model).
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Previous Result

Under the for-each recovery criteria and our noise model, we have:

Reference Number of tests Decoding time Construction

Lower Bound Ω(k log n) – –

Inan et al. O(k log n) Ω(n) Explicit

Inan et al. O(k log n) O
(
k3 · log k + k log n

)
Explicit

NDD O(k log n) Ω(n) Randomized

GROTESQUE O(k · log k · log n) O
(
k(log n + log2 k)

)
Randomized

SAFFRON O(k · log k · log n) O(k · log k · log n) Randomized

BMC O(k log n) O(k2 · log k · log n) Randomized

Goal: Design an algorithm that (i) requires O(k log n) tests, and (ii) has decoding

time with a better scaling than BMC.

Nelvin Tan (NUS) Fast Splitting Algorithms April 2021 5 / 21



Outline

1 Splitting Technique

2 Noisy Splitting Algorithm

3 Analysis of the Algorithm

4 Summary

5 Addressing Previous Feedback
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Splitting Technique

• Start with a tree, where each node is represented by a group of items.

• Example (binary splitting):
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Splitting Technique (Noiseless Setting)

1 Testing: Conduct non-adaptive tests on the nodes.

2 Decoding (level by level):

I Split each node into two nodes of equal sizes if the node’s test outcome is +ve.

I Return the set of final level nodes that is reached and appears only in +ve

tests as Ŝ.

Example (tests always reveal correct defectivity):
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Noisy Algorithm: Testing Procedure

• Conduct testing from level log2 k onwards.

• Each node is placed into a single test of a test sequence, chosen uniformly at

random.

• Node placements between different test sequences are independent.

𝒏

𝒏

𝒌

𝒏

𝒌

𝟏 𝟏

Level 0:

Level 𝒍𝒐𝒈𝟐𝒌:

Level 𝒍𝒐𝒈𝟐𝒏:

𝑻𝐥𝐞𝐧 = 𝑪𝒌

𝑵Testing
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Noisy Algorithm: Decoding Procedure

• Int. label: By majority voting of N tests that the node is included in.

I 1 int. label per node for all testing levels except the final level, which has

C ′ log2 n int. labels per node.

• Final label: Look at the int. labels of nodes up to r levels below the current

node. The final label decides the defectivity of a node.

I If ∃ a path with > r
2

+ve int. labels, then assign the final label to be +ve.

I Otherwise, assign the final label to be -ve.
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Main Result

Theorem

For any constants ε > 0 and t > 0 satisfying εt > 1, ∃ choices of C ,C ′,N = O(1)

and r = O(log k + log log n) such that with O(k log n) tests, our algorithm

satisfies the following with probability at least 1− O
((
k log n

k

)1−εt)
:

• The returned estimate Ŝ equals S;

• The decoding time is O
((
k log n

k

)1+ε)
.

Remarks:

• ε and t are new variables that are introduced in the analysis.

• We need εt > 1 to get vanishing error probability.

• We can make ε arbitrarily small by choosing a large t.
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• The decoding time is O
((
k log n

k

)1+ε)
.

Remarks:

• ε and t are new variables that are introduced in the analysis.

• We need εt > 1 to get vanishing error probability.

• We can make ε arbitrarily small by choosing a large t.

Nelvin Tan (NUS) Fast Splitting Algorithms April 2021 11 / 21



Analysis Outline

What we need to show:

• Low decoding time.

• Probability of wrong defective set output is vanishing.

• Number of tests is small.
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Analysis: Levels log2 k to log2 n − 1

• Get upper bound on prob. of wrong final label:

1 Upper bound prob. of mistake in 1 seq. of tests:

I Defective node: Only need to consider the noise to get f d1 (p,C).

I Non-defective node: Need to consider both noise and the event of being placed

with a def. node to get f nd1 (p,C).

2 By independence between test seq., #tests with mistake is stochastically

dominated by Bin(N, f d1 (p,C)) and Bin(N, f nd1 (p,C)).

3 By Hoeffding’s inequality, we can upper bound prob. of wrong int. label (i.e.,

≥ N
2

mistakes) by e−f d2 (N,p,C) and e−f nd2 (N,p,C).
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Analysis: Levels log2 k to log2 n − 1

• Get upper bound on prob. of wrong final label:

4 Upper bound prob. of wrong final label mistake:

I Defective node (mistake: all paths have ≥ r
2

-ve int. labels):( r
r/2

)(
e−f d2 (N,p,C)

)r/2 ≤ 2r
(
e−f d2 (N,p,C)

)r/2
=

(
4e−f d2 (N,p,C)

)r/2

I Non-defective node (mistake: ∃ a path with > r
2

+ve int. labels):

2r
(
4e−f nd2 (N,p,C)

)r/2
=

(
16e−f nd2 (N,p,C)

)r/2

5 We introduce t such that for a sufficiently large N (i.e., N ≥ f3(p,C , t)), the

prob. of wrong final label for both types are bounded above by 2−tr .
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Analysis: Levels log2 k to log2 n − 1

• How about the other cases?

I Case 2: pfinal ≤ 2−tr still holds because #paths ≤ 2r .

I Case 3: Replace r with C ′ log2 n in pfinal ≤ 2−tr . Taking union bound over all

n nodes at the final level, the prob. of any mistake at the final level is at most

n
(
2−tC ′ log2 n) = O

(
n1−tC ′)

.
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Analysis: Levels log2 k to log2 n − 1

Bound on #nodes explored in the tree:

• Ideally, we don’t want to explore too many nodes as

it takes time.

• Getting the following 3 kinds of nodes correct

implies no further exploration:

1 nodes at level log2 k;

2 all defective nodes below level log2 k;

3 children nodes of those defective nodes.

• There are at most 2k log2

(
n
k

)
+ k of them.

I At most k defective nodes per level.

I Each def. node produces ≤ 1 non-def. node.
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Analysis: Levels log2 k to log2 n − 1

High prob. bound on #nodes explored in the tree:

• Taking union bound over the 3 kinds of nodes and further upper bounding it

by an appropriate decaying function, we get(
2k log2

(n
k

)
+ k
)

︸ ︷︷ ︸
#nodes from the 3 kinds of nodes

2−tr︸︷︷︸
pfinal

≤
(
k log2

(n
k

))1−εt

︸ ︷︷ ︸
decaying function

.

• Choosing r = 1
t log2

(
3
(
k log2

n
k

)εt)
satisfies the above condition, i.e., we

make no mistakes in labelling the 3 kinds of nodes.

• Hence, we conclude that using our choice of r , we explore at most

2k log2

(
n
k

)
+ k = O

(
k log n

k

)
nodes with probability 1− o(1).
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Analysis: Decoding time

• Decoding time: Count #test outcome checks.

I For levels log2 k to log2 n − 1, we explored

O
(
k log n

k

)
nodes, where each node requires at

most
∑r

i=1 2i = O(2r ) int. label checks, which

further requires N = O(1) test outcome checks.

#checks = O
((
k log n

k

)1+ε)
.

I At the final level, we have at most 2k explored

nodes, where each node requires C ′ log2 n int. label

checks, which further requires N = O(1) test

outcome checks. #checks = O(k log n).

I Summing the checks in the points above give

O
((
k log n

k

)1+ε)
.
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Number of Tests

𝑻𝐥𝐞𝐧
′ = 𝒌

𝑪′𝑵𝒍𝒐𝒈𝟐𝒏

𝒏

𝒏

𝒌

𝒏

𝒌

𝟏 𝟏

Level 0:

Level 𝒍𝒐𝒈𝟐𝒌:

Level 𝒍𝒐𝒈𝟐𝒏:

𝑻𝐥𝐞𝐧 = 𝑪𝒌

𝑵Testing

Testing

• Number of tests: At most

CNk log2

(n
k

)
︸ ︷︷ ︸

levels log2 k, . . . , log2 n − 1

+C ′Nk log2 n︸ ︷︷ ︸
final level

= O(k log n).
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Summary

Reference Number of tests Decoding time Construction

Lower Bound Ω
(
k log n

k

)
– –

Inan et al. O(k log n) Ω(n) Explicit

Inan et al. O(k log n) O
(
k3 · log k + k log n

)
Explicit

NDD O(k log n) Ω(n) Randomized

GROTESQUE O(k · log k · log n) O
(
k(log n + log2 k)

)
Randomized

SAFFRON O(k · log k · log n) O(k · log k · log n) Randomized

BMC O(k log n) O(k2 · log k · log n) Randomized

This talk O(k log n) O
((
k log n

k

)1+ε)
Randomized

• Our algorithm (i) uses order-optimal number of tests and (ii) has a

near-linear dependence on k in the decoding time.
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Jointly-Sparse Group Testing

• Sparsity constraints:

I bounded (at most γ) tests-per-item;

I bounded (at most ρ) items-per-test.

• Lower bound: It seems to be just the max of the 2 settings.

• Upper bound:

I Test designs with double constraints are required.

I For ρ-setting, it can be showed that a random test design with double

constraints is superior to a design with a single constraint.

I Working towards an optimal algorithm for the ρ-setting can help us

understand the more general setting.

I Some progress made to tighten the lower and upper bounds.
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