Fast Splitting Algorithms for Noisy and Sparsity-Constrained Group Testing Final Year Project (CP4101)

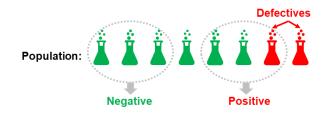
Nelvin Tan

National University of Singapore (NUS)

April 2021

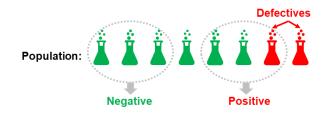
イロト イヨト イヨト イヨト

Introduction



- **Goal:** Identify a subset of defective items within a larger set of items based on pooled tests.
- Can help to reduce the #tests, which is ideal when tests are costly.
- Some applications:
 - Medical testing (e.g., COVID-19)
 - Data science
 - Communication protocols

Introduction



- **Goal:** Identify a subset of defective items within a larger set of items based on pooled tests.
- Can help to reduce the #tests, which is ideal when tests are costly.

• Some applications:

- Medical testing (e.g., COVID-19)
- Data science
- Communication protocols

イロト イポト イヨト イヨト

Setup

- Population of n items labelled $\{1, \ldots, n\}$.
- Defective set $S \subset \{1, \ldots, n\}$, where k = |S| = o(n).
- We consider the following settings:
 - Non-adaptive: Test pools are designed in advance (makes parallel implementation of the tests more viable).
 - Noiseless: Get a +ve test outcome if there is least one defective item, and a -ve outcome if there is no defective item.
 - For-each recovery: The algorithm is allowed vanishing error probability, i.e.,

$$\mathbb{P}[\widehat{\mathcal{S}} \neq \mathcal{S}] o 0$$
 as $n \to \infty$.

Setup

- Population of n items labelled $\{1, \ldots, n\}$.
- Defective set $S \subset \{1, \ldots, n\}$, where k = |S| = o(n).
- We consider the following settings:
 - Non-adaptive: Test pools are designed in advance (makes parallel implementation of the tests more viable).
 - Noiseless: Get a +ve test outcome if there is least one defective item, and a -ve outcome if there is no defective item.
 - For-each recovery: The algorithm is allowed vanishing error probability, i.e.,

$$\mathbb{P}[\widehat{\mathcal{S}} \neq \mathcal{S}] \to 0 \text{ as } n \to \infty.$$

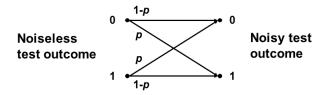
イロト 不得 トイヨト イヨト

Noise Model

Previously, we considered the following constraints under the noiseless setting:

- bounded tests-per-item;
- bounded items-per-test.

In this talk, we study a symmetric noise model (with no sparsity constraints):



+ Our result holds under any asymmetric noise model where $0 \rightarrow 1$ and $1 \rightarrow 0$ flips both have probability at most constant p (e.g., Z-channel model).

イロト イポト イヨト イヨト

Previous Result

Under the for-each recovery criteria and our noise model, we have:

Reference	Number of tests	Decoding time	Construction
Lower Bound	$\Omega(k \log n)$	_	_
Inan et al.	$O(k \log n)$	$\Omega(n)$	Explicit
Inan et al.	$O(k \log n)$	$O(k^3 \cdot \log k + k \log n)$	Explicit
NDD	$O(k \log n)$	$\Omega(n)$	Randomized
GROTESQUE	$O(k \cdot \log k \cdot \log n)$	$O(k(\log n + \log^2 k))$	Randomized
SAFFRON	$O(k \cdot \log k \cdot \log n)$	$O(k \cdot \log k \cdot \log n)$	Randomized
BMC	$O(k \log n)$	$O(k^2 \cdot \log k \cdot \log n)$	Randomized

Goal: Design an algorithm that (i) requires $O(k \log n)$ tests, and (ii) has decoding time with a better scaling than BMC.

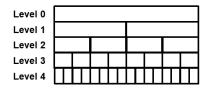
イロト イヨト イヨト イヨト

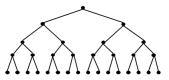
- Splitting Technique
- Noisy Splitting Algorithm
- Analysis of the Algorithm
- Summary
- 6 Addressing Previous Feedback

イロト イポト イヨト イヨト

Splitting Technique

- Start with a tree, where each node is represented by a group of items.
- Example (binary splitting):





1 Testing: Conduct non-adaptive tests on the nodes.

Decoding (level by level):

- Split each node into two nodes of equal sizes if the node's test outcome is +ve.
- Return the set of final level nodes that is reached and appears only in +ve tests as S.

Example (tests always reveal correct defectivity):

1 Testing: Conduct non-adaptive tests on the nodes.

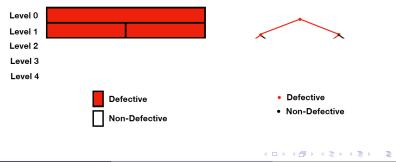
2 Decoding (level by level):

- Split each node into two nodes of equal sizes if the node's test outcome is +ve.
 - Return the set of final level nodes that is reached and appears only in +ve tests as \widehat{S} .

1 Testing: Conduct non-adaptive tests on the nodes.

Occoding (level by level):

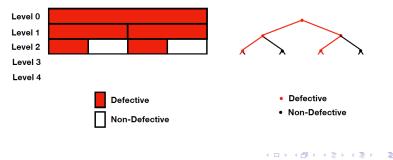
- Split each node into two nodes of equal sizes if the node's test outcome is +ve.
 - Return the set of final level nodes that is reached and appears only in +ve tests as \widehat{S} .



1 Testing: Conduct non-adaptive tests on the nodes.

2 Decoding (level by level):

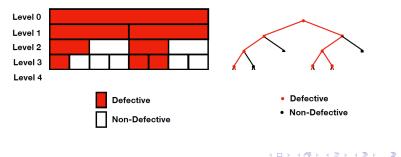
- Split each node into two nodes of equal sizes if the node's test outcome is +ve.
 - Return the set of final level nodes that is reached and appears only in +ve tests as \widehat{S} .



1 Testing: Conduct non-adaptive tests on the nodes.

2 Decoding (level by level):

- Split each node into two nodes of equal sizes if the node's test outcome is +ve.
 - Return the set of final level nodes that is reached and appears only in +ve tests as \widehat{S} .

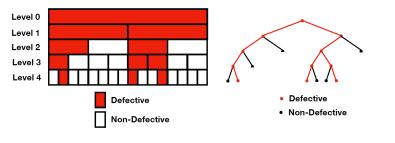


1 Testing: Conduct non-adaptive tests on the nodes.

2 Decoding (level by level):

- Split each node into two nodes of equal sizes if the node's test outcome is +ve.
 - Return the set of final level nodes that is reached and appears only in +ve tests as \widehat{S} .

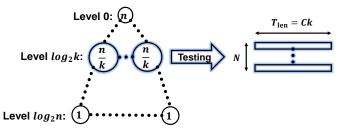
Example (tests always reveal correct defectivity):



イロト イヨト イヨト

Noisy Algorithm: Testing Procedure

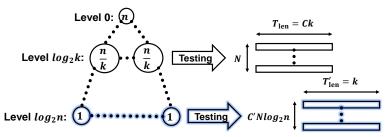
- Conduct testing from level log₂ k onwards.
- Each node is placed into a single test of a test sequence, chosen uniformly at random.
- Node placements between different test sequences are independent.



イロト イヨト イヨト イヨ

Noisy Algorithm: Testing Procedure

- Conduct testing from level log₂ k onwards.
- Each node is placed into a single test of a test sequence, chosen uniformly at random.
- Node placements between different test sequences are independent.



(日)

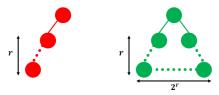
Noisy Algorithm: Decoding Procedure

- Int. label: By majority voting of N tests that the node is included in.
 - 1 int. label per node for all testing levels except the final level, which has C' log₂ n int. labels per node.
- **Final label:** Look at the int. labels of nodes up to *r* levels below the current node. The final label decides the defectivity of a node.
 - If \exists a path with $> \frac{r}{2}$ +ve int. labels, then assign the final label to be +ve.
 - Otherwise, assign the final label to be -ve.

Noisy Algorithm: Decoding Procedure

- Int. label: By majority voting of N tests that the node is included in.
 - 1 int. label per node for all testing levels except the final level, which has C' log₂ n int. labels per node.
- **Final label:** Look at the int. labels of nodes up to *r* levels below the current node. The final label decides the defectivity of a node.
 - If \exists a path with $> \frac{r}{2}$ +ve int. labels, then assign the final label to be +ve.

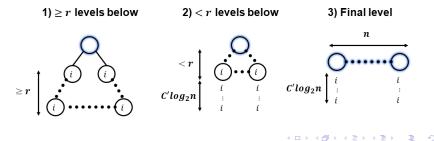
Otherwise, assign the final label to be -ve.



イロト 不得 トイヨト イヨト

Noisy Algorithm: Decoding Procedure

- Int. label: By majority voting of N tests that the node is included in.
 - 1 int. label per node for all testing levels except the final level, which has C' log₂ n int. labels per node.
- **Final label:** Look at the int. labels of nodes up to *r* levels below the current node. The final label decides the defectivity of a node.
 - ▶ If \exists a path with $> \frac{r}{2}$ +ve int. labels, then assign the final label to be +ve.
 - Otherwise, assign the final label to be -ve.



Main Result

Theorem

For any constants $\epsilon > 0$ and t > 0 satisfying $\epsilon t > 1$, \exists choices of C, C', N = O(1)and $r = O(\log k + \log \log n)$ such that with $O(k \log n)$ tests, our algorithm satisfies the following with probability at least $1 - O((k \log \frac{n}{k})^{1-\epsilon t})$:

- The returned estimate \widehat{S} equals S;
- The decoding time is $O((k \log \frac{n}{k})^{1+\epsilon})$.

Remarks:

- *ϵ* and *t* are new variables that are introduced in the analysis.
- We need εt > 1 to get vanishing error probability.
- We can make ϵ arbitrarily small by choosing a large t.

Main Result

Theorem

For any constants $\epsilon > 0$ and t > 0 satisfying $\epsilon t > 1$, \exists choices of C, C', N = O(1)and $r = O(\log k + \log \log n)$ such that with $O(k \log n)$ tests, our algorithm satisfies the following with probability at least $1 - O((k \log \frac{n}{k})^{1-\epsilon t})$:

- The returned estimate \widehat{S} equals S;
- The decoding time is $O((k \log \frac{n}{k})^{1+\epsilon})$.

Remarks:

- ϵ and t are new variables that are introduced in the analysis.
- We need $\epsilon t > 1$ to get vanishing error probability.
- We can make ϵ arbitrarily small by choosing a large t.

イロト イヨト イヨト

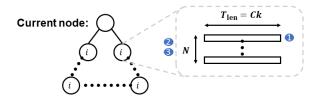
Analysis Outline

What we need to show:

- Low decoding time.
- Probability of wrong defective set output is vanishing.
- Number of tests is small.

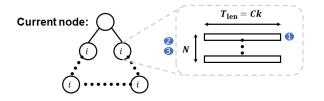
イロト イヨト イヨト

- Get upper bound on prob. of wrong final label:
 - 1 Upper bound prob. of mistake in 1 seq. of tests:
 - Defective node: Only need to consider the noise to get $f_1^d(p, C)$.
 - Non-defective node: Need to consider both noise and the event of being placed with a def. node to get f₁nd(p, C).
 - By independence between test seq., #tests with mistake is stochastically dominated by Bin(N, f₁^d(p, C)) and Bin(N, f₁nd(p, C)).
 - **(3)** By Hoeffding's inequality, we can upper bound prob. of wrong int. label (i.e., $\geq \frac{N}{2}$ mistakes) by $e^{-f_2^d(N,\rho,C)}$ and $e^{-f_2^{nd}(N,\rho,C)}$.



イロト イヨト イヨト イヨ

- Get upper bound on prob. of wrong final label:
 - 1 Upper bound prob. of mistake in 1 seq. of tests:
 - Defective node: Only need to consider the noise to get $f_1^d(p, C)$.
 - Non-defective node: Need to consider both noise and the event of being placed with a def. node to get f₁nd(p, C).
 - **2** By independence between test seq., #tests with mistake is stochastically dominated by $Bin(N, f_1^d(p, C))$ and $Bin(N, f_1^{nd}(p, C))$.
 - **3** By Hoeffding's inequality, we can upper bound prob. of wrong int. label (i.e., $\geq \frac{N}{2}$ mistakes) by $e^{-f_2^d(N,p,C)}$ and $e^{-f_2^{nd}(N,p,C)}$.

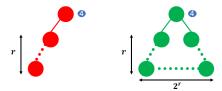


(日)

• Get upper bound on prob. of wrong final label:

4 Upper bound prob. of wrong final label mistake:

- ► Defective node (mistake: all paths have $\geq \frac{r}{2}$ -ve int. labels): $\binom{r}{r/2} \left(e^{-f_2^d(N,p,C)}\right)^{r/2} \leq 2^r \left(e^{-f_2^d(N,p,C)}\right)^{r/2} = \left(4e^{-f_2^d(N,p,C)}\right)^{r/2}$
- ▶ Non-defective node (mistake: \exists a path with $> \frac{r}{2}$ +ve int. labels): $2^r (4e^{-f_2^{nd}(N,p,C)})^{r/2} = (16e^{-f_2^{nd}(N,p,C)})^{r/2}$

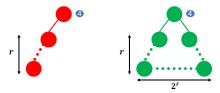


S We introduce t such that for a sufficiently large N (i.e., N ≥ f₃(p, C, t)), the prob. of wrong final label for both types are bounded above by 2^{-tr}.

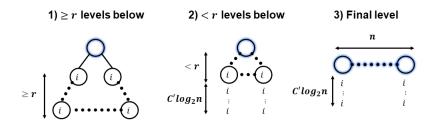
• Get upper bound on prob. of wrong final label:

4 Upper bound prob. of wrong final label mistake:

- ► Defective node (mistake: all paths have $\geq \frac{r}{2}$ -ve int. labels): $\binom{r}{r/2} \left(e^{-f_2^d(N,p,C)} \right)^{r/2} \leq 2^r \left(e^{-f_2^d(N,p,C)} \right)^{r/2} = \left(4e^{-f_2^d(N,p,C)} \right)^{r/2}$
- ▶ Non-defective node (mistake: \exists a path with $> \frac{r}{2}$ +ve int. labels): $2^r (4e^{-f_2^{nd}(N,p,C)})^{r/2} = (16e^{-f_2^{nd}(N,p,C)})^{r/2}$



We introduce t such that for a sufficiently large N (i.e., N ≥ f₃(p, C, t)), the prob. of wrong final label for both types are bounded above by 2^{-tr}.



- How about the other cases?
 - Case 2: $p_{\text{final}} \leq 2^{-tr}$ still holds because $\# \text{paths} \leq 2^r$.
 - ► Case 3: Replace r with C' log₂ n in p_{final} ≤ 2^{-tr}. Taking union bound over all n nodes at the final level, the prob. of any mistake at the final level is at most

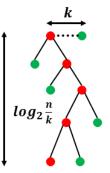
$$n(2^{-tC'\log_2 n}) = O(n^{1-tC'}).$$

Bound on #nodes explored in the tree:

- Ideally, we don't want to explore too many nodes as it takes time.
- Getting the following 3 kinds of nodes correct implies no further exploration:
 - nodes at level log₂ k;
 - 2 all defective nodes below level log₂ k;
 - 3 children nodes of those defective nodes.
- There are at most $2k \log_2\left(\frac{n}{k}\right) + k$ of them.
 - At most k defective nodes per level.
 - ► Each def. node produces ≤ 1 non-def. node.

Bound on #nodes explored in the tree:

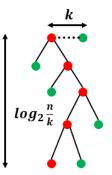
- Ideally, we don't want to explore too many nodes as it takes time.
- Getting the following 3 kinds of nodes correct implies no further exploration:
 - 1 nodes at level $\log_2 k$;
 - **2** all defective nodes below level $\log_2 k$;
 - 3 children nodes of those defective nodes.
- There are at most $2k \log_2\left(\frac{n}{k}\right) + k$ of them.
 - At most k defective nodes per level.
 - ▶ Each def. node produces ≤ 1 non-def. node.



イロト 不得 トイヨト イヨト

Bound on #nodes explored in the tree:

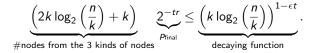
- Ideally, we don't want to explore too many nodes as it takes time.
- Getting the following 3 kinds of nodes correct implies no further exploration:
 - 1 nodes at level $\log_2 k$;
 - 2 all defective nodes below level $\log_2 k$;
 - 3 children nodes of those defective nodes.
- There are at most $2k \log_2\left(\frac{n}{k}\right) + k$ of them.
 - At most k defective nodes per level.
 - ► Each def. node produces ≤ 1 non-def. node.



イロト 不得 トイヨト イヨト

High prob. bound on #nodes explored in the tree:

 Taking union bound over the 3 kinds of nodes and further upper bounding it by an appropriate decaying function, we get

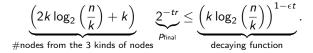


- Choosing $r = \frac{1}{t} \log_2 \left(3 \left(k \log_2 \frac{n}{k} \right)^{\epsilon t} \right)$ satisfies the above condition, i.e., we make no mistakes in labelling the 3 kinds of nodes.
- Hence, we conclude that using our choice of r, we explore at most $2k \log_2\left(\frac{n}{k}\right) + k = O(k \log \frac{n}{k})$ nodes with probability 1 o(1).

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

High prob. bound on #nodes explored in the tree:

 Taking union bound over the 3 kinds of nodes and further upper bounding it by an appropriate decaying function, we get

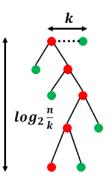


- Choosing $r = \frac{1}{t} \log_2 \left(3 \left(k \log_2 \frac{n}{k} \right)^{\epsilon t} \right)$ satisfies the above condition, i.e., we make no mistakes in labelling the 3 kinds of nodes.
- Hence, we conclude that using our choice of r, we explore at most $2k \log_2\left(\frac{n}{k}\right) + k = O(k \log \frac{n}{k})$ nodes with probability 1 o(1).

Analysis: Decoding time

• **Decoding time:** Count #test outcome checks.

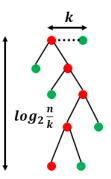
- ► For levels $\log_2 k$ to $\log_2 n 1$, we explored $O(k \log \frac{n}{k})$ nodes, where each node requires at most $\sum_{i=1}^{r} 2^i = O(2^r)$ int. label checks, which further requires N = O(1) test outcome checks. #checks = $O((k \log \frac{n}{k})^{1+\epsilon})$.
- At the final level, we have at most 2k explored nodes, where each node requires C' log₂ n int. label checks, which further requires N = O(1) test outcome checks. #checks = O(k log n).
- Summing the checks in the points above give $O((k \log \frac{n}{k})^{1+\epsilon}).$



Analysis: Decoding time

• **Decoding time:** Count #test outcome checks.

- For levels log₂ k to log₂ n − 1, we explored O(k log n/k) nodes, where each node requires at most ∑^r_{i=1} 2ⁱ = O(2^r) int. label checks, which further requires N = O(1) test outcome checks. #checks = O((k log n/k)^{1+ε}).
- At the final level, we have at most 2k explored nodes, where each node requires C' log₂ n int. label checks, which further requires N = O(1) test outcome checks. #checks = O(k log n).
- Summing the checks in the points above give $O((k \log \frac{n}{k})^{1+\epsilon}).$

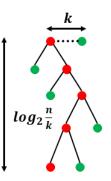


イロト イポト イヨト イヨト

Analysis: Decoding time

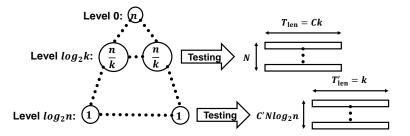
• **Decoding time:** Count #test outcome checks.

- For levels log₂ k to log₂ n − 1, we explored O(k log n/k) nodes, where each node requires at most ∑^r_{i=1} 2ⁱ = O(2^r) int. label checks, which further requires N = O(1) test outcome checks. #checks = O((k log n/k)^{1+ε}).
- At the final level, we have at most 2k explored nodes, where each node requires C' log₂ n int. label checks, which further requires N = O(1) test outcome checks. #checks = O(k log n).
- Summing the checks in the points above give $O((k \log \frac{n}{k})^{1+\epsilon}).$



イロト イポト イヨト イヨト

Number of Tests



• Number of tests: At most

$$\underbrace{CNk \log_2\left(\frac{n}{k}\right)}_{\text{levels } \log_2 k, \dots, \log_2 n - 1} + \underbrace{C'Nk \log_2 n}_{\text{final level}} = O(k \log n).$$

イロト イヨト イヨト イヨト

Summary

Reference	Number of tests	Decoding time	Construction
Lower Bound	$\Omega(k \log \frac{n}{k})$	-	-
Inan et al.	$O(k \log n)$	$\Omega(n)$	Explicit
Inan et al.	$O(k \log n)$	$O(k^3 \cdot \log k + k \log n)$	Explicit
NDD	$O(k \log n)$	$\Omega(n)$	Randomized
GROTESQUE	$O(k \cdot \log k \cdot \log n)$	$O(k(\log n + \log^2 k))$	Randomized
SAFFRON	$O(k \cdot \log k \cdot \log n)$	$O(k \cdot \log k \cdot \log n)$	Randomized
BMC	$O(k \log n)$	$O(k^2 \cdot \log k \cdot \log n)$	Randomized
This talk	$O(k \log n)$	$Oig(ig(k\lograc{n}{k}ig)^{1+\epsilon}ig)$	Randomized

• Our algorithm (i) uses order-optimal number of tests and (ii) has a near-linear dependence on k in the decoding time.

Jointly-Sparse Group Testing

• Sparsity constraints:

- bounded (at most γ) tests-per-item;
- bounded (at most ρ) items-per-test.
- Lower bound: It seems to be just the max of the 2 settings.

• Upper bound:

- Test designs with double constraints are required.
- For ρ-setting, it can be showed that a random test design with double constraints is superior to a design with a single constraint.
- Working towards an optimal algorithm for the ρ-setting can help us understand the more general setting.
- Some progress made to tighten the lower and upper bounds.

イロト イヨト イヨト イヨト

Jointly-Sparse Group Testing

• Sparsity constraints:

- bounded (at most γ) tests-per-item;
- bounded (at most ρ) items-per-test.
- Lower bound: It seems to be just the max of the 2 settings.

• Upper bound:

- Test designs with double constraints are required.
- For ρ-setting, it can be showed that a random test design with double constraints is superior to a design with a single constraint.
- Working towards an optimal algorithm for the ρ-setting can help us understand the more general setting.
- Some progress made to tighten the lower and upper bounds.

イロト イポト イヨト イヨト