Fast Splitting Algorithms for Noisy

and Sparsity-Constrained Group Testing
Final Year Project (CP4101)

Nelvin Tan

National University of Singapore (NUS)

April 2021

Nelvin Tan (NUS) Fast Splitting Algorithms April 2021 1/21

Introduction

Defectives
ropuation: A A A A A A K &
Negative Positive

® Goal: Identify a subset of defective items within a larger set of items based

on pooled tests.

® Can help to reduce the #tests, which is ideal when tests are costly.

Nelvin Tan (NUS) Fast Splitting Algorithms April 2021 2/21

Introduction

Defectives
ropuation: A A A A A A K &
Negative Positive

® Goal: Identify a subset of defective items within a larger set of items based
on pooled tests.
® Can help to reduce the #tests, which is ideal when tests are costly.
® Some applications:
> Medical testing (e.g., COVID-19)

» Data science

» Communication protocols

Nelvin Tan (NUS) Fast Splitting Algorithms April 2021 2/21

Setup

® Population of n items labelled {1,...,n}

® Defective set S C {1, ..., n}, where k = |S| = o(n).

- = T 9ac
Nelvin Tan (NUS) Fast Splitting Algorithms

Setup

® Population of n items labelled {1, ..., n}.
® Defective set S C {1, ..., n}, where k = |S| = o(n).
® We consider the following settings:

> Non-adaptive: Test pools are designed in advance (makes parallel
implementation of the tests more viable).

> Noiseless: Get a +ve test outcome if there is least one defective item, and a
-ve outcome if there is no defective item.

» For-each recovery: The algorithm is allowed vanishing error probability, i.e.,

]P)[g;éS]—>0asn—>oo.

Nelvin Tan (NUS) Fast Splitting Algorithms April 2021 3/21

Noise Model

Previously, we considered the following constraints under the noiseless setting:
® bounded tests-per-item;
® bounded items-per-test.

In this talk, we study a symmetric noise model (with no sparsity constraints):

1-p
0 0
Noiseless p Noisy test
test outcome p outcome
1 1
1-p

+ Our result holds under any asymmetric noise model where 0 =+ 1 and 1 — 0

flips both have probability at most constant p (e.g., Z-channel model).

Nelvin Tan (NUS) Fast Splitting Algorithms April 2021

4/21

Previous Result

Under the for-each recovery criteria and our noise model, we have:

’ Reference ‘ Number of tests ‘ Decoding time ‘ Construction
Lower Bound Q(klog n) - -
Inan et al. O(k log n) Q(n) Explicit
Inan et al. O(k log n) O(k® - log k + klog n) Explicit
NDD O(k log n) Q(n) Randomized

GROTESQUE | O(k-logk -logn) | O(k(logn+ log® k)) | Randomized
SAFFRON O(k - log k - log n) O(k - log k - log n) Randomized
BMC O(k log n) O(k? - log k - log n) Randomized

Goal: Design an algorithm that (i) requires O(k log n) tests, and (ii) has decoding
time with a better scaling than BMC.

Nelvin Tan (NUS) Fast Splitting Algorithms April 2021 5/21

Outline

o Splitting Technique
@ Noisy Splitting Algorithm
o Analysis of the Algorithm

o Summary

o Addressing Previous Feedback

Nelvin Tan (NUS) Fast Splitting Algorithms April 2021 6/21

Splitting Technique

® Start with a tree, where each node is represented by a group of items.

e Example (binary splitting):

Level 0
Level 1
Level 2
Level 3

tevera ([ITTTITITITITT]

Nelvin Tan (NUS) Fast Splitting Algorithms April 2021 7/21

Splitting Technique (Noiseless Setting)

@ Testing: Conduct non-adaptive tests on the nodes.

Nelvin Tan (NUS) Fast Splitting Algorithms April 2021 8/21

Splitting Technique (Noiseless Setting)

@ Testing: Conduct non-adaptive tests on the nodes.
® Decoding (level by level):

» Split each node into two nodes of equal sizes if the node’s test outcome is +ve.

» Return the set of final level nodes that is reached and appears only in +ve
tests as S.

Example (tests always reveal correct defectivity):

A~
Level 1
Level 2
Level 3
Level 4
. Defective o Defective
3 * Non-Defective
D Non-Defective

Nelvin Tan (NUS) Fast Splitting Algorithms April 2021 8/21

Splitting Technique (Noiseless Setting)

@ Testing: Conduct non-adaptive tests on the nodes.

® Decoding (level by level):

» Split each node into two nodes of equal sizes if the node’s test outcome is +ve.

» Return the set of final level nodes that is reached and appears only in +ve
tests as S.

Example (tests always reveal correct defectivity):

Level 0
Level 1 /\

Level 2
Level 3
Level 4
. Defective o Defective
D Non-Defective * Non-Defective

Nelvin Tan (NUS) Fast Splitting Algorithms April 2021 8/21

Splitting Technique (Noiseless Setting)

@ Testing: Conduct non-adaptive tests on the nodes.

® Decoding (level by level):

» Split each node into two nodes of equal sizes if the node’s test outcome is +ve.

» Return the set of final level nodes that is reached and appears only in +ve
tests as S.

Example (tests always reveal correct defectivity):

Level 0
Level 1
Level 3
Level 4
. Defective o Defective
D Non-Defective * Non-Defective

Nelvin Tan (NUS) Fast Splitting Algorithms April 2021 8/21

Splitting Technique (Noiseless Setting)

@ Testing: Conduct non-adaptive tests on the nodes.
® Decoding (level by level):

» Split each node into two nodes of equal sizes if the node’s test outcome is +ve.

» Return the set of final level nodes that is reached and appears only in +ve
tests as S.

Example (tests always reveal correct defectivity):

Level 0
Level 1
Level 2
Level 3
Level 4
. Defective o Defective
D Non-Defective * Non-Defective

Nelvin Tan (NUS) Fast Splitting Algorithms April 2021 8/21

Splitting Technique (Noiseless Setting)

@ Testing: Conduct non-adaptive tests on the nodes.

® Decoding (level by level):

» Split each node into two nodes of equal sizes if the node’s test outcome is +ve.

» Return the set of final level nodes that is reached and appears only in +ve
tests as S.

Example (tests always reveal correct defectivity):

Level 0
Level 1
Level 2
Level 3
Level 4 I I l l I
. Defective o Defective
D Non-Defective * Non-Defective

Nelvin Tan (NUS) Fast Splitting Algorithms April 2021 8/21

Noisy Algorithm: Testing Procedure

® Conduct testing from level log, k onwards.

® Each node is placed into a single test of a test sequence, chosen uniformly at

random.

® Node placements between different test sequences are independent.

Level O: @ Tyen = Ck
L] L]
Level log,k: @-@ N [.
4 ———

Level lngn: @"...l...l@

Nelvin Tan (NUS) Fast Splitting Algorithms April 2021 9/21

Noisy Algorithm: Testing Procedure

® Conduct testing from level log, k onwards.

® Each node is placed into a single test of a test sequence, chosen uniformly at

random.

® Node placements between different test sequences are independent.

Level O: .@. Tyen = Ck
———
Level log,k: @-@ N [.
: A ——
. “ Tien = k

C————
Level lngn: @'0000..0..@ C’Nlogzn[e
' ——

Nelvin Tan (NUS) Fast Splitting Algorithms April 2021

9/21

Noisy Algorithm: Decoding Procedure
® |nt. label: By majority voting of N tests that the node is included in.

> 1 int. label per node for all testing levels except the final level, which has

C’log, n int. labels per node.

Nelvin Tan (NUS) Fast Splitting Algorithms April 2021 10/21

Noisy Algorithm: Decoding Procedure

® |nt. label: By majority voting of N tests that the node is included in.

> 1 int. label per node for all testing levels except the final level, which has

C’log, n int. labels per node.

® Final label: Look at the int. labels of nodes up to r levels below the current
node. The final label decides the defectivity of a node.

> If 3 a path with > 5 +ve int. labels, then assign the final label to be +ve.

» Otherwise, assign the final label to be -ve.

le oo

2T

Nelvin Tan (NUS) Fast Splitting Algorithms April 2021 10/21

Noisy Algorithm: Decoding Procedure

® |nt. label: By majority voting of N tests that the node is included in.

> 1 int. label per node for all testing levels except the final level, which has

C’log, n int. labels per node.

® Final label: Look at the int. labels of nodes up to r levels below the current
node. The final label decides the defectivity of a node.
> If 3 a path with > 5 +ve int. labels, then assign the final label to be +ve.

> Otherwise, assign the final label to be -ve.

1) = r levels below 2) < r levels below 3) Final level

n

@ Q, —
R

=r i C’logzn] ;

N C'logzn H ; i ii
@"""'@ l i

Nelvin Tan (NUS) Fast Splitting Algorithms April 2021 10/21

Main Result

Theorem
For any constants e > 0 and t > 0 satisfying et > 1, 3 choices of C,C', N = O(1)
and r = O(log k + log log n) such that with O(klog n) tests, our algorithm
satisfies the following with probability at least 1 — O((k log f)l_et) :

e The returned estimate S equals S;

® The decoding time is O((k log f)lJre).

Nelvin Tan (NUS) Fast Splitting Algorithms April 2021 11/21

Main Result

Theorem

For any constants € > 0 and t > 0 satisfying et > 1, 3 choices of C, C’', N = O(1)

and r = O(log k + log log n) such that with O(k log n) tests, our algorithm
satisfies the following with probability at least 1 — O((k log g)l_“) g
* The returned estimate S equals S;

® The decoding time is O((k log £)1+6)-

Remarks:
® ¢ and t are new variables that are introduced in the analysis.
® We need et > 1 to get vanishing error probability.

® We can make € arbitrarily small by choosing a large t.

Nelvin Tan (NUS) Fast Splitting Algorithms April 2021

11/21

Analysis Outline

What we need to show:
® | ow decoding time.
® Probability of wrong defective set output is vanishing.

® Number of tests is small.

Nelvin Tan (NUS) Fast Splitting Algorithms April 2021 12 /21

Analysis: Levels log, k to log, n — 1

® Get upper bound on prob. of wrong final label:
@ Upper bound prob. of mistake in 1 seq. of tests:

> Defective node: Only need to consider the noise to get £(p, C).
» Non-defective node: Need to consider both noise and the event of being placed
with a def. node to get f(p, C).

Tien = Ck
Current node: . .l—,
Y I I:IG
N
——1

-' ‘- °
oo

Nelvin Tan (NUS) Fast Splitting Algorithms April 2021 13/21

Analysis: Levels log, k to log, n — 1

® Get upper bound on prob. of wrong final label:
@ Upper bound prob. of mistake in 1 seq. of tests:

> Defective node: Only need to consider the noise to get £(p, C).
» Non-defective node: Need to consider both noise and the event of being placed
with a def. node to get f(p, C).

@® By independence between test seq., #tests with mistake is stochastically
dominated by Bin(N, f?(p, C)) and Bin(N, f"(p, C)).
© By Hoeffding's inequality, we can upper bound prob. of wrong int. label (i.e.,

. _fd _¢nd
> Y mistakes) by e " (V:p:C) and e~ 2" (N:P:C).

Tl =Ck
Current node: . i

-' ‘- °
oo

Nelvin Tan (NUS) Fast Splitting Algorithms April 2021 13/21

Y II:IG
N
 —

Analysis: Levels log, k to log, n — 1

® Get upper bound on prob. of wrong final label:
@ Upper bound prob. of wrong final label mistake:
> Defective node (mistake: all paths have > £ -ve int. labels):

(72 (e B P)T7 < 2 (e E WO T~ (s Nr O 2

> Non-defective node (mistake: 3 a path with > 7 +ve int. labels):

2,(4e_f-2nd(P,))r/Q (16e_f2nd(,p,C))r/2

2r

Nelvin Tan (NUS) Fast Splitting Algorithms April 2021

14/21

Analysis: Levels log, k to log, n — 1

® Get upper bound on prob. of wrong final label:
@ Upper bound prob. of wrong final label mistake:

> Defective node (mistake: all paths have > £ -ve int. labels):
(7 (=8 O) 1 < 2 (RO (gem R n

> Non-defective node (mistake: 3 a path with > 7 +ve int. labels):

2 (46— (NP, C)) /2 — (we—fz (N.p,C))r/2

ZT
©® We introduce t such that for a sufficiently large N (i.e., N > f5(p, C, t)), the

prob. of wrong final label for both types are bounded above by 2.

Nelvin Tan (NUS) Fast Splitting Algorithms April 2021 14 /21

Analysis: Levels log, k to log, n — 1

1) > r levels below 2) < r levels below 3) Final level

n

Q0 Q. —
30 <r[@@ Oeesees)

- , i i
[C'log,n | ;

4 :
C'logzn[H i i i
@.......@ l i

® How about the other cases?

> Case 2: prina < 277 still holds because #paths < 2.
> Case 3: Replace r with C'log, n in psina < 27, Taking union bound over all

n nodes at the final level, the prob. of any mistake at the final level is at most

n(z—tc’ log, n) _ O(nl—tc’).

Nelvin Tan (NUS) Fast Splitting Algorithms April 2021 15/21

Analysis: Levels log, k to log, n — 1

Bound on #nodes explored in the tree:

® |deally, we don't want to explore too many nodes as

it takes time.

Nelvin Tan (NUS) Fast Splitting Algorithms April 2021 16 /21

Analysis: Levels log, k to log, n — 1

Bound on #nodes explored in the tree:
® |deally, we don't want to explore too many nodes as
it takes time.
® Getting the following 3 kinds of nodes correct
implies no further exploration:

@ nodes at level log, k;
@ all defective nodes below level log, k;

© children nodes of those defective nodes.

Nelvin Tan (NUS) Fast Splitting Algorithms

April 2021

16/21

Analysis: Levels log, k to log, n — 1

Bound on #nodes explored in the tree:

® |deally, we don't want to explore too many nodes as
it takes time.
® Getting the following 3 kinds of nodes correct
implies no further exploration:
@ nodes at level log, k;
@ all defective nodes below level log, k;
© children nodes of those defective nodes.

® There are at most 2k log, (%) + k of them.

> At most k defective nodes per level.

» Each def. node produces < 1 non-def. node.

Nelvin Tan (NUS) Fast Splitting Algorithms

April 2021

16/21

Analysis: Levels log, k to log, n — 1

High prob. bound on #nodes explored in the tree:

® Taking union bound over the 3 kinds of nodes and further upper bounding it

by an appropriate decaying function, we get

(i (7) +4) 22 (ko (7))

Pfinal
#nodes from the 3 kinds of nodes decaying function

Nelvin Tan (NUS) Fast Splitting Algorithms April 2021

17/21

Analysis: Levels log, k to log, n — 1

High prob. bound on #nodes explored in the tree:

® Taking union bound over the 3 kinds of nodes and further upper bounding it

by an appropriate decaying function, we get

(i (7) +4) 22 (ko (7))

Pfinal
##nodes from the 3 kinds of nodes decaying function

® Choosing r = 1 log, (3(k log, g)d) satisfies the above condition, i.e., we

make no mistakes in labelling the 3 kinds of nodes.

® Hence, we conclude that using our choice of r, we explore at most
2klog, () 4+ k = O(klog %) nodes with probability 1 — o(1).

Nelvin Tan (NUS) Fast Splitting Algorithms April 2021 17/21

Analysis: Decoding time

® Decoding time: Count #test outcome checks.

» For levels log, k to log, n — 1, we explored
O(klog %) nodes, where each node requires at
most 3_7_, 2 = O(2") int. label checks, which
further requires N = O(1) test outcome checks.
#checks = O((k log %)He).

Nelvin Tan (NUS) Fast Splitting Algorithms

April 2021

18/21

Analysis: Decoding time

® Decoding time: Count #test outcome checks.

» For levels log, k to log, n — 1, we explored
O(klog %) nodes, where each node requires at
most 3_7_, 2 = O(2") int. label checks, which
further requires N = O(1) test outcome checks.
#checks = O((k log %)He).

» At the final level, we have at most 2k explored
nodes, where each node requires C’ log, n int. label
checks, which further requires N = O(1) test
outcome checks. #checks = O(k log n).

Nelvin Tan (NUS) Fast Splitting Algorithms April 2021 18/21

Analysis: Decoding time

® Decoding time: Count #test outcome checks.

» For levels log, k to log, n — 1, we explored
O(klog %) nodes, where each node requires at
most 3_7_, 2 = O(2") int. label checks, which
further requires N = O(1) test outcome checks.
#checks = O((k log %)He).

» At the final level, we have at most 2k explored

nodes, where each node requires C’ log, n int. label

checks, which further requires N = O(1) test
outcome checks. #checks = O(k log n).

» Summing the checks in the points above give
n\ 1+e
O((klog ?) *)

Nelvin Tan (NUS) Fast Splitting Algorithms

April 2021

18/21

Number of Tests

Level O: .@. Tien = Ck

Level log,k: @@ N[III

:. ... T{en =k
. '.
Level loggn: (L) ++++eeevee D) cmagzn[—
———

¢ Number of tests: At most

CNk log, (%) + C'Nklogy n = O(k log n).
—_———

final level
levels log, k, ..., log, n —1

Nelvin Tan (NUS) Fast Splitting Algorithms April 2021

19/21

Summary

’ Reference ‘ Number of tests ‘ Decoding time ‘ Construction
Lower Bound Q(k log ﬁ) - -
Inan et al. O(k log n) Q(n) Explicit
Inan et al. O(klog n) O(k®-log k + klog n) Explicit
NDD O(k log n) Q(n) Randomized

GROTESQUE | O(k -logk -logn) | O(k(logn+ log? k)) | Randomized
SAFFRON O(k - log k - log n) O(k - log k - log n) Randomized
BMC O(k log n) O(k? - log k - log n) Randomized

This talk O(k log n) O((klog 2)"™) Randomized

® Qur algorithm (i) uses order-optimal number of tests and (ii) has a

near-linear dependence on k in the decoding time.

Nelvin Tan (NUS) Fast Splitting Algorithms April 2021

20/21

Jointly-Sparse Group Testing

® Sparsity constraints:

> bounded (at most 7) tests-per-item;
> bounded (at most p) items-per-test.

Nelvin Tan (NUS) Fast Splitting Algorithms April 2021 21/21

Jointly-Sparse Group Testing

® Sparsity constraints:

> bounded (at most 7) tests-per-item;
> bounded (at most p) items-per-test.
® Lower bound: It seems to be just the max of the 2 settings.
® Upper bound:
» Test designs with double constraints are required.
» For p-setting, it can be showed that a random test design with double
constraints is superior to a design with a single constraint.
» Working towards an optimal algorithm for the p-setting can help us

understand the more general setting.

» Some progress made to tighten the lower and upper bounds.

Nelvin Tan (NUS) Fast Splitting Algorithms April 2021 21/21

