Near-Optimal Sparse Adaptive Group Testing ISIT 2020

Nelvin Tan and Jonathan Scarlett

National University of Singapore (NUS)

June 2020

イロト イボト イヨト イヨ

Motivation

- In 1943, the US army had the task of identifying syphilitic soldiers
- Individual blood tests for syphilis were expensive
- Using fewer tests is desirable

< □ > < 同 > < 回 > < 回 >

Motivation

• Robert Dorfman's key insight: reduce number of tests by pooling

Example:

Central problem:

- How many tests are required to accurately discover the infected soldiers?
- How can it be achieved?

イロト イヨト イヨト イヨト

Motivation

• Robert Dorfman's key insight: reduce number of tests by pooling

Example:

Central problem:

- How many tests are required to accurately discover the infected soldiers?
- How can it be achieved?

Applications

• Medical testing: COVID-19, by pooling Ribonucleic acid (RNA) samples [Yelin et al., 2020]

- Some other applications:
 - Biology
 - Communications
 - Data science

Applications

• Medical testing: COVID-19, by pooling Ribonucleic acid (RNA) samples [Yelin et al., 2020]

- Some other applications:
 - Biology
 - Communications
 - Data science

- In this talk:
 - *n* items labelled $\{1, \ldots, n\}$ that produces binary outcomes when tested
 - Defective set $\mathcal{D} \subset \{1, \ldots, n\}$, where $d = |\mathcal{D}| \in o(n)$
 - Combinatorial prior: Defective set D ~ Uniform ⁿ_d
 - Noiseless testing: negative outcome ⇒ all items in pool are non-defective; positive outcome ⇒ at least one item in pool is defective
 - Distinction between adaptive and non-adaptive testing

< □ > < 同 > < 回 > < 回 >

- In this talk:
 - n items labelled {1,...,n} that produces binary outcomes when tested
 - Defective set $\mathcal{D} \subset \{1, \ldots, n\}$, where $d = |\mathcal{D}| \in o(n)$
 - Combinatorial prior: Defective set D ~ Uniform ⁿ_d
 - Noiseless testing: negative outcome ⇒ all items in pool are non-defective; positive outcome ⇒ at least one item in pool is defective
 - Distinction between adaptive and non-adaptive testing

< □ > < 同 > < 回 > < 回 >

- In this talk:
 - *n* items labelled $\{1, \ldots, n\}$ that produces binary outcomes when tested
 - Defective set $\mathcal{D} \subset \{1, \ldots, n\}$, where $d = |\mathcal{D}| \in o(n)$
 - Combinatorial prior: Defective set D ~ Uniform ⁿ_d
 - Noiseless testing: negative outcome ⇒ all items in pool are non-defective; positive outcome ⇒ at least one item in pool is defective
 - Distinction between adaptive and non-adaptive testing

- In this talk:
 - *n* items labelled $\{1, \ldots, n\}$ that produces binary outcomes when tested
 - Defective set $\mathcal{D} \subset \{1, \ldots, n\}$, where $d = |\mathcal{D}| \in o(n)$
 - Combinatorial prior: Defective set D ~ Uniform ⁿ_d
 - Noiseless testing: negative outcome ⇒ all items in pool are non-defective; positive outcome ⇒ at least one item in pool is defective
 - Distinction between adaptive and non-adaptive testing

- In this talk:
 - *n* items labelled $\{1, \ldots, n\}$ that produces binary outcomes when tested
 - Defective set $\mathcal{D} \subset \{1, \ldots, n\}$, where $d = |\mathcal{D}| \in o(n)$
 - Combinatorial prior: Defective set D ~ Uniform ⁿ_d
 - Noiseless testing: negative outcome ⇒ all items in pool are non-defective; positive outcome ⇒ at least one item in pool is defective
 - Distinction between adaptive and non-adaptive testing

Recovery Criteria

• Error probability bounded by some $\epsilon > 0$:

$$P_e := \mathbb{P}[\widehat{\mathcal{D}} \neq \mathcal{D}] \leq \epsilon$$

- We study two conditions on the number of tests *T*:
 - Information theoretic lower bound:
 - ▶ Necessary number of tests T for $P_{s} \leq \epsilon$
 - Upper bound from algorithm:
 - Sufficient number of tests T our algorithm needs for $P_{\theta} \leq \epsilon$

Recovery Criteria

• Error probability bounded by some $\epsilon > 0$:

$$P_e := \mathbb{P}[\widehat{\mathcal{D}} \neq \mathcal{D}] \leq \epsilon$$

- We study two conditions on the number of tests *T*:
 - Information theoretic lower bound:
 - Necessary number of tests T for $P_e \leq \epsilon$
 - Upper bound from algorithm:
 - Sufficient number of tests T our algorithm needs for $P_e \leq \epsilon$

イロト イボト イヨト イヨト

Testing procedure is subjected to one of the following:

- Items are finitely divisible and thus may participate in at most γ tests
- Tests are size-constrained and thus contain no more than ρ items per test

Example: We need at least 20 *ml* of blood per soldier for reliable testing.

Divisibility constraint: finite amount of blood per soldier

• Size constraint: limitations on volume capacity of the machine

< □ > < 同 > < 回 > < 回 >

Testing procedure is subjected to one of the following:

- Items are finitely divisible and thus may participate in at most γ tests
- Tests are size-constrained and thus contain no more than ρ items per test

Example: We need at least 20 ml of blood per soldier for reliable testing.

• Divisibility constraint: finite amount of blood per soldier

• Size constraint: limitations on volume capacity of the machine

•:	 	.	•:

100 ml capacity machine

< ロ > < 同 > < 回 > < 回 >

- Previous work in literature shows that γ ∈ Θ(log n) and ρ ∈ Θ(ⁿ/_d) are required to attain optimal scaling laws for the unconstrained setting
- We are interested in:
 - Divisibility constraint: $\gamma \in o(\log n)$
 - Size constraint: $\rho \in o(\frac{n}{d})$

イロト イヨト イヨト イヨト

- Previous work in literature shows that γ ∈ Θ(log n) and ρ ∈ Θ(ⁿ/_d) are required to attain optimal scaling laws for the unconstrained setting
- We are interested in:
 - Divisibility constraint: $\gamma \in o(\log n)$
 - Size constraint: $\rho \in o\left(\frac{n}{d}\right)$

イロト イボト イヨト イヨト

Previous Work on Non-Adaptive Setting

- Considered the non-adaptive setting
- For some error probability $P_e = \mathbb{P}[\widehat{D} \neq D] \leq \epsilon$:

Constraint type	Scaling regime	Tests required
o divisible items	$d\in \Theta(n^ heta), heta < 1$	$T > \gamma d\left(\frac{n}{d}\right)^{(1-5\epsilon)/\gamma}$
	$\gamma \in o(\log n)$	$T < \left\lceil \gamma d \left(rac{n}{\epsilon} ight)^{1/\gamma} ight ceil$
a sized tests	$d\in \Theta(n^ heta), heta < 1$	$T\in \Omegaig(rac{n}{ ho}ig)$
ρ -sized tests	$ ho \in oig(rac{n}{d}ig)$	$T\in Oig(rac{n}{ ho}ig)$

Table: Previous results (non-adaptive setting)

Outline

$\textbf{ 0} \ \text{Adaptive Setting for } \gamma \text{-Divisible Items }$

- Lower Bound Result
- Upper Bound Result

Overview of Results

Adaptive setting: test pools are designed sequentially, and each one can depend on previous test outcomes.

Example:

イロト イヨト イヨト イヨト

Lower Bound Result

Theorem

If $d \in o(n)$, $\gamma \in o(\log n)$, any non-adaptive or adaptive group testing algorithm that tests each item at most γ times and has $P_e \leq \epsilon$ requires at least $e^{-(1+o(1))}\gamma d(\frac{n}{d})^{1/\gamma}$ tests.

Improvements: We have strengthened previous lower bound by

- Improving dependence on ϵ , and
- Extending its validity to the adaptive setting.

Lower Bound Result

Theorem

If $d \in o(n)$, $\gamma \in o(\log n)$, any non-adaptive or adaptive group testing algorithm that tests each item at most γ times and has $P_e \leq \epsilon$ requires at least $e^{-(1+o(1))}\gamma d(\frac{n}{d})^{1/\gamma}$ tests.

Improvements: We have strengthened previous lower bound by

- Improving dependence on ϵ , and
- Extending its validity to the adaptive setting.

イロト イボト イヨト イヨト

Lower Bound Result Interpretation

Theorem: We require at least $e^{-(1+o(1))}\gamma d(\frac{n}{d})^{1/\gamma}$ tests. **Interpretation:**

• If every test reveals 1 bit of entropy, we need $\log {n \choose d} \approx d \log \left(\frac{n}{d} \right)$ tests

 Our constraint results in tests to be less informative ⇒ need more tests than unconstrained setting

イロン イ団 とく ヨン イヨン

Lower Bound Result Interpretation

Theorem: We require at least $e^{-(1+o(1))}\gamma d(\frac{n}{d})^{1/\gamma}$ tests. **Interpretation:**

- If every test reveals 1 bit of entropy, we need $\log \binom{n}{d} \approx d \log \left(\frac{n}{d}\right)$ tests
- Our constraint results in tests to be less informative ⇒ need more tests than unconstrained setting

イロト イヨト イヨト イヨト

Lower Bound Proof Outline

Using a counting argument, we get

$$\mathbb{P}[\mathsf{suc}] \leq rac{\sum_{i=0}^{\gamma d} \binom{T}{i}}{\binom{n}{d}},$$

where intuitively,

- numerator: # possible test outcomes
- denominator: # defective sets of size d
- From an asymptotic analysis of the counting-based bound, we obtain our lower bound for *T*

Lower Bound Proof Outline

Using a counting argument, we get

$$\mathbb{P}[\mathsf{suc}] \leq \frac{\sum_{i=0}^{\gamma d} \binom{T}{i}}{\binom{n}{d}},$$

where intuitively,

- numerator: # possible test outcomes
- denominator: # defective sets of size d
- From an asymptotic analysis of the counting-based bound, we obtain our lower bound for *T*

Upper Bound Result

Theorem

If $d \in o(n)$, $\gamma \in o(\log n)$, then there exists an adaptive group testing algorithm that tests each item at most γ times achieving $P_e = 0$ using at most $T = \gamma d(\frac{n}{d})^{1/\gamma}$ tests.

Improvements:

- Improved scaling over previous non-adaptive result: $\left(\frac{n}{c}\right)^{1/\gamma} \Rightarrow \left(\frac{n}{d}\right)^{1/\gamma}$
- Matches the lower bound $T \ge e^{-(1+o(1))}\gamma d(\frac{n}{d})^{1/\gamma}$ up to a constant factor of $e^{-(1+o(1))}$

Upper Bound Result

Theorem

If $d \in o(n)$, $\gamma \in o(\log n)$, then there exists an adaptive group testing algorithm that tests each item at most γ times achieving $P_e = 0$ using at most $T = \gamma d(\frac{n}{d})^{1/\gamma}$ tests.

Improvements:

- Improved scaling over previous non-adaptive result: $\left(\frac{n}{\epsilon}\right)^{1/\gamma} \Rightarrow \left(\frac{n}{d}\right)^{1/\gamma}$
- Matches the lower bound $T \ge e^{-(1+o(1))}\gamma d(\frac{n}{d})^{1/\gamma}$ up to a constant factor of $e^{-(1+o(1))}$

(日) (四) (注) (注) (正)

Adaptive Algorithm

Key idea: Can we partition the items into equal groups of ideal sizes?

• Group sizes:
$$M \to M^{1-\frac{1}{\gamma-1}} \to M^{1-\frac{2}{\gamma-1}} \to \dots \to 1$$

- n/M splits from stage 0 to stage 1
- $M^{1/(\gamma-1)}$ splits between any two subsequent stages

Adaptive Algorithm

Key idea: Can we partition the items into equal groups of ideal sizes?

• Group sizes: $M \to M^{1-\frac{1}{\gamma-1}} \to M^{1-\frac{2}{\gamma-1}} \to \cdots \to 1$

- n/M splits from stage 0 to stage 1
- $M^{1/(\gamma-1)}$ splits between any two subsequent stages

イロト 不得 トイヨト イヨト

Adaptive Algorithm Analysis

- In stage 1: we made n/M tests
- From stage 2 onwards: we made at most $dM^{\frac{1}{\gamma-1}}$ tests
- This gives us $T \leq \frac{n}{M} + (\gamma 1) dM^{\frac{1}{\gamma 1}}$.
- Optimizing the upper bound w.r.t. *M* gives us $M = \left(\frac{n}{d}\right)^{\frac{1-\gamma}{\gamma}}$
- Substituting back into the upper bound, we get our result

イロト イヨト イヨト イヨト

Adaptive Algorithm Analysis

- In stage 1: we made n/M tests
- From stage 2 onwards: we made at most $dM^{\frac{1}{\gamma-1}}$ tests
- This gives us $T \leq \frac{n}{M} + (\gamma 1) dM^{\frac{1}{\gamma 1}}$.
- Optimizing the upper bound w.r.t. *M* gives us $M = \left(\frac{n}{d}\right)^{\frac{1}{\gamma}}$
- Substituting back into the upper bound, we get our result

< ロ > < 同 > < 回 > < 回 >

Adaptive Algorithm Analysis

- In stage 1: we made n/M tests
- From stage 2 onwards: we made at most $dM^{\frac{1}{\gamma-1}}$ tests
- This gives us $T \leq \frac{n}{M} + (\gamma 1) dM^{\frac{1}{\gamma 1}}$.
- Optimizing the upper bound w.r.t. *M* gives us $M = \left(\frac{n}{d}\right)^{\frac{\gamma-1}{\gamma}}$
- Substituting back into the upper bound, we get our result

< ロ > < 同 > < 回 > < 回 >

Overview of Results

Recap: Focused on the adaptive setting with γ -divisible items constraint.

	Scaling regime	Tests required
non-adaptive	$egin{aligned} & d \in \Theta(n^ heta), heta < 1 \ & \gamma \in o(\log n) \end{aligned}$	$egin{aligned} \mathcal{T} &> \gamma dig(rac{n}{d}ig)^{(1-5\epsilon)/\gamma} \ \mathcal{T} &< ig[\gamma dig(rac{n}{\epsilon}ig)^{1/\gamma}ig] \end{aligned}$
adaptive	$d \in o(n)$ $\gamma \in o(\log n)$ $\gamma d ightarrow \infty$	$egin{aligned} \mathcal{T} > e^{-(1+o(1))} \gamma dig(rac{n}{d}ig)^{1/\gamma} \ \mathcal{T} < \gamma dig(rac{n}{d}ig)^{1/\gamma} \end{aligned}$

Table: Comparison of our adaptive results with previous non-adaptive results

Overview of Results

Recap: Focused on the adaptive setting with γ -divisible items constraint.

	Scaling regime	Tests required
non-adaptive	$egin{aligned} & d \in \Theta(n^ heta), heta < 1 \ & \gamma \in o(\log n) \end{aligned}$	$egin{aligned} \mathcal{T} > \gamma egin{aligned} & \gamma egin{aligned} & (1-5\epsilon)/\gamma \ & \mathcal{T} < igg[\gamma eta igg(rac{n}{\epsilon} igg)^{1/\gamma} igg] \end{aligned}$
adaptive	$egin{aligned} & d \in o(n) \ & \gamma \in o(\log n) \ & \gamma d o \infty \end{aligned}$	$egin{aligned} T > e^{-(1+o(1))} \gamma dig(rac{n}{d}ig)^{1/\gamma} \ T < \gamma dig(rac{n}{d}ig)^{1/\gamma} \end{aligned}$

Table: Comparison of our adaptive results with previous non-adaptive results