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Motivation

® |n 1943, the US army had the task of identifying syphilitic soldiers
® |ndividual blood tests for syphilis were expensive

® Using fewer tests is desirable
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Motivation

® Robert Dorfman’s key insight: reduce number of tests by pooling

Example:
4 48 4R AN Ak as
i i J
O ®# Ok
(discard) (discard) (found) (found)

Nelvin Tan and Jonathan Scarlett (NUS) Near-Optimal Sparse Adaptive Group Testing June 2020 3/17



Motivation

® Robert Dorfman’s key insight: reduce number of tests by pooling

Example:
A 48 A5 AR A8 AR AR
i i . N
O @i OiOi
(discard) (discard) (found) (found)

Central problem:
® How many tests are required to accurately discover the infected soldiers?

® How can it be achieved?
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Applications

® Medical testing: COVID-19, by pooling Ribonucleic acid (RNA) samples
[Yelin et al., 2020]
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Applications

® Medical testing: COVID-19, by pooling Ribonucleic acid (RNA) samples
[Yelin et al., 2020]

® Some other applications:

> Biology
» Communications

» Data science
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Group Testing Setup

n
1

1

iiii dd

d

® |n this talk:

> nitems labelled {1,..., n} that produces binary outcomes when tested
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® |n this talk:

> nitems labelled {1,..., n} that produces binary outcomes when tested
» Defective set D C {1,..., n}, where d = |D| € o(n)

Nelvin Tan and Jonathan Scarlett (NUS) Near-Optimal Sparse Adaptive Group Testing June 2020 5/17
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® |n this talk:

> nitems labelled {1,..., n} that produces binary outcomes when tested
» Defective set D C {1,..., n}, where d = |D| € o(n)

» Combinatorial prior: Defective set D ~ Uniform (%))
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Group Testing Setup

n
f . . . . l . 0 . '-‘
l_,_l
d
® |n this talk:
> nitems labelled {1,..., n} that produces binary outcomes when tested

» Defective set D C {1,..., n}, where d = |D| € o(n)
» Combinatorial prior: Defective set D ~ Uniform (%))
> Noiseless testing: negative outcome = all items in pool are non-defective;

positive outcome = at least one item in pool is defective
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Group Testing Setup
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® |n this talk:
> nitems labelled {1,..., n} that produces binary outcomes when tested

Defective set D C {1,..., n}, where d = |D| € o(n)

d
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» Combinatorial prior: Defective set D ~ Uniform (%))
> Noiseless testing: negative outcome = all items in pool are non-defective;

positive outcome = at least one item in pool is defective

v

Distinction between adaptive and non-adaptive testing
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Recovery Criteria

® Error probability bounded by some ¢ > 0:

P.:=P[D+#D]<e¢
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Recovery Criteria

® Error probability bounded by some ¢ > 0:
P.:=P[D+#D]<e¢

® We study two conditions on the number of tests T:
» Information theoretic lower bound:
> Necessary number of tests T for Pe < €
» Upper bound from algorithm:

> Sufficient number of tests T our algorithm needs for P, < ¢
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Sparse Group Testing

Testing procedure is subjected to one of the following:
® |tems are finitely divisible and thus may participate in at most ~ tests

® Tests are size-constrained and thus contain no more than p items per test
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Sparse Group Testing

Testing procedure is subjected to one of the following:

® |tems are finitely divisible and thus may participate in at most -y tests

® Tests are size-constrained and thus contain no more than p items per test
Example: We need at least 20 m/ of blood per soldier for reliable testing.

® Divisibility constraint: finite amount of blood per soldier

. o) el o el !
ak - E EEEE

100 ml

® Size constraint: limitations on volume capacity of the machine

‘e e s ce ce
®. e. . o, o.

100 ml capacity machine
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Sparse Group Testing

® Previous work in literature shows that v € ©(logn) and p € ©(%) are

required to attain optimal scaling laws for the unconstrained setting
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Sparse Group Testing

® Previous work in literature shows that v € ©(logn) and p € ©(%) are

required to attain optimal scaling laws for the unconstrained setting
® We are interested in:
> Divisibility constraint: v € o(log n)
> Size constraint: p € o(4)
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Previous Work on Non-Adaptive Setting

® Considered the non-adaptive setting
® For some error probability P, = IP’[ZS #D]<e

Constraint type ‘ Scaling regime ‘

Tests required

9 T\ (1577
~-divisible items deo(n),0<1 | T> 7d(d) 1/
~ € o(log n) T < hd(g) 1
o n
p-sized tests d €0(n ),nG <1 Te Q(,;)
peo(f) Teo(2)

Table: Previous results (non-adaptive setting)
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Outline

@ Adaptive Setting for ~-Divisible Items
o Lower Bound Result

e Upper Bound Result

® Overview of Results
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Adaptive Setting

Adaptive setting: test pools are designed sequentially, and each one can depend
on previous test outcomes.

Example:
Al AL A8 A A8 48 AR A8

) Step 1
) Step 2
GEREN step 3
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Lower Bound Result

Theorem

If d € o(n), v € o(log n), any non-adaptive or adaptive group testing algorithm
that tests each item at most -y times and has P, < € requires at least
e_(lJ“’(l))'yd(g)l/’y tests.
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Lower Bound Result

Theorem

If d € o(n), v € o(log n), any non-adaptive or adaptive group testing algorithm
that tests each item at most -y times and has P, < € requires at least
e_(1+°(1))'yd(§)l/’y tests.

Improvements: We have strengthened previous lower bound by

® |mproving dependence on ¢, and

® Extending its validity to the adaptive setting.
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Lower Bound Result Interpretation

Theorem: We require at least e_(1+°(1))7d(§)1/7 tests.

Interpretation:

D ~ Uniform(g)
KikL . KK KK Yo )

+ — ]— Entropy < 1
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Lower Bound Result Interpretation

Theorem: We require at least e_(1+°(1))7d(§)1/7 tests.

Interpretation:

D ~ Uniform(}))
RAKL . KK KL }ooor )
procedure
+ — ]_ Entropy <1

® If every test reveals 1 bit of entropy, we need log (}) ~ dlog (4) tests

® Qur constraint results in tests to be less informative = need more tests than

unconstrained setting
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Lower Bound Proof Outline

® Using a counting argument, we get

yd (T
P[SUC] S z:i+(i)7
()
where intuitively,

» numerator: # possible test outcomes

> denominator: # defective sets of size d
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Lower Bound Proof Outline

® Using a counting argument, we get

2% ()
Plsuc] < ===,
(&)
where intuitively,
» numerator: # possible test outcomes
> denominator: # defective sets of size d
® From an asymptotic analysis of the counting-based bound, we obtain our

lower bound for T
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Upper Bound Result

Theorem

If d € o(n), v € o(log n), then there exists an adaptive group testing algorithm
that tests each item at most y times achieving P. = 0 using at most
T =~d(5)Y7 tests.
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Upper Bound Result

Theorem

If d € o(n), v € o(log n), then there exists an adaptive group testing algorithm
that tests each item at most y times achieving P. = 0 using at most
T =~d(5)Y7 tests.

Improvements:

. . . 1 1
* Improved scaling over previous non-adaptive result: (2) AN (5) M

® Matches the lower bound T > e_(1+°(1))'yd(§)l/’y up to a constant factor of
- (1+0(1))
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Adaptive Algorithm

Key idea: Can we partition the items into equal groups of ideal sizes?

Y

( ] S
" s "

G - J stage

1 2
® Group sizes: M —» M "7 5> M5 ... 51
» n/M splits from stage O to stage 1

> MYO=Y gplits between any two subsequent stages
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Adaptive Algorithm

Key idea: Can we partition the items into equal groups of ideal sizes?

n

] Stage 0

O

] Stage 1

1 1
1—— 1—
M v-1 ' M v-1 )

( | PO | ] #groups:Mﬁ

1 2
* Group sizes: M — M*™5-1 — M'771 ... > 1
> n/M splits from stage O to stage 1

> MYO=D splits between any two subsequent stages
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Adaptive Algorithm Analysis

n
Stage 0: ( )
M ‘ M
Stage 1: | )| PP ( ] (n/M groups)
1 1

— — 1
Stage 2: C—) eee [ (<dMr goups)

1
o oo (SdMr=1 groups)
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Adaptive Algorithm Analysis

Stage 0: ( )
M ‘ M
Stage 1: ( ) XX ( ) (n/M groups)
1- i 1-%1
vt M
Stage 2: C— eee [ (sdMv goups)

1
o oo (SdMr=1 groups)

® In stage 1: we made n/M tests
1
® From stage 2 onwards: we made at most dM~-1 tests

® This givesus T < 5 + (v — 1)dMﬁ,
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Adaptive Algorithm Analysis

Stage 0: ( )
M ‘ M
Stage 1: ( ) XX ( ) (n/M groups)
1--1 1-%1
. T
Stage 2: C— eee [ (sdMv goups)

1
o oo (SdMr=1 groups)

In stage 1: we made n/M tests

® From stage 2 onwards: we made at most dM7T tests

® This givesus T < 5 + (v — 1)dMﬁ.

® QOptimizing the upper bound w.r.t. M gives us M = (3)%1

® Substituting back into the upper bound, we get our result
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Overview of Results

Recap: Focused on the adaptive setting with y-divisible items constraint.

‘ Scaling regime ‘ Tests required

deo(n’),0<1| T>n~d(5)" "
7 € oflog n) < ()]

non-adaptive
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Overview of Results

Recap: Focused on the adaptive setting with y-divisible items constraint.

‘ Scaling regime ‘ Tests required
[0
3 0 ny(1=5¢)/7
2l deo(n’),d<1 T >~d(5)
= 1
i v € o(log n) ’_ d( ) /7"
2
% de 0(”) T> e,(1+o(1))7d(§)1/7
k vd — 00 Te\d

Table: Comparison of our adaptive results with previous non-adaptive results
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