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Introduction

• Goal: Identify a subset of defective items within a larger set of items based

on pooled tests.

• Can help to reduce the #tests, which is ideal when tests are costly.

• Some applications:

I Medical testing (e.g., COVID-19)

I Data science

I Communication protocols
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Setup

• Population of n items labelled {1, . . . , n}.

• Defective set S ⊂ {1, . . . , n}, where k = |S| = Θ
(
nθ

)
, for θ ∈ [0, 1).

• We consider the following settings:

I Combinatorial prior: Defective set S chosen uniformly among all sets of size k.

I Non-adaptive: Test pools are designed in advance.

I Noiseless: Get a +ve test outcome if there is least one defective item, and a

-ve outcome if there is no defective item.

I Small error probability recovery: Produce Ŝ such that

P
[
Ŝ 6= S

]
→ 0 as n → ∞,

where the probability is taken over the randomness of S and the test design.

Nelvin Tan and Jonathan Scarlett (NUS) Group Testing with Size-Constrained Tests May 2021 3 / 16



Setup

• Population of n items labelled {1, . . . , n}.

• Defective set S ⊂ {1, . . . , n}, where k = |S| = Θ
(
nθ

)
, for θ ∈ [0, 1).

• We consider the following settings:

I Combinatorial prior: Defective set S chosen uniformly among all sets of size k.

I Non-adaptive: Test pools are designed in advance.

I Noiseless: Get a +ve test outcome if there is least one defective item, and a

-ve outcome if there is no defective item.

I Small error probability recovery: Produce Ŝ such that
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Sparsity-Constrained Group Testing

• Tests are size-constrained and thus contain no more than ρ items per test.

• Applications: Testing equipment may be limited in the volume of samples it

receives, or large pools may be unsuitable due to dilution effects,

• Previous work in literature shows that ρ ∈ Θ
(
n
k

)
is required to attain optimal

scaling laws for the unconstrained setting.

• Hence, we are interested in the regime ρ ∈ o
(
n
k

)
, and more specifically

ρ = Θ
((
n
k

)β)
, for β ∈ [0, 1).
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Previous Result

Under our setup (recall k = Θ(nθ) and ρ = Θ
((
n
k

)β)
), we have:

• Converse: 1−6ε
1−β ·

n
ρ .

• Achievability:
⌈

1+ε
(1−θ)(1−β)

⌉
·
⌈
n
ρ

⌉
.

• Improved converse (when β = 0): max
{(

1 +
⌊

θ
1−θ

⌋)
n
ρ ,

2n
ρ+1

}
.

• Improved achievability (when β = 0): max
{(

1 +
⌊

θ
1−θ

⌋)
n
ρ ,

2n
ρ+1

}
.

Note that ε arbitrarily small positive constant.

• Goal: Get similar improvements (in the constant factor) for large ρ (i.e.,

when β > 0).
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Randomized Test Design

Example of a random test matrix:

• The i-th column represents the tests that the i-th item participates in.

• The i-th row determines the items in the i-th test pool.
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Randomized Test Design

Uniformly sample the sub-matrix Xj:

𝑛

𝜌
tests

𝑛 items

Row weight of 𝜌

• Sample c sub-matrices (X1, . . . ,Xc) independently.

• Form test matrix by concatenating X1, . . . ,Xc vertically, giving us a

doubly-constrained matrix.

• Column weight restriction is not strictly imposed by the testing constraints

but helps in avoiding “bad” events where some items are not being tested.
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Definite Defectives (DD) Algorithm

Some useful observations:

• Any item in a negative test is definitely non-defective (DND).

• All other items can (initally) be considered possibly defective (PD).

• If a test contains only one PD item, then that item is definitely defective

(DD).

Algorithms:

• COMP (previous): Declare DND items to be non-def. and the rest def.

• DD (this talk): Declare DD items to be def. and the rest non-def.
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Main Result

Theorem

For k = Θ
(
nθ

)
, with θ ∈ [0, 1), and ρ = Θ

((
n
k

)β)
, with β ∈ [0, 1), for any integer

c satisfying:

• If θ ≥ 1
2 : c > θ

(1−θ)(1−β) and c ≥ 2−β
1−β ;

• If θ < 1
2 : c ≥

1−θβ
(1−θ)(1−β) ;

the DD algorithm with cn
ρ tests recovers the defective set S with asymptotically

vanishing error probability.

• This is an improvement over previous acheivability results.
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Main Result

Plot for β = 0:
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• For β = 0, our result coincides with the improved achievability result.

• For each β shown (0, 0.25, and 0.75), there are strict improvements over

COMP (previous work), and the gap widens for β = 0.75.
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Main Result

Plot for β = 0.75:
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Analysis Outline of the DD Algorithm

• DD algorithm:

I Declare all DD items as defective and the rest non-defective.

I DD algorithm makes a mistake if any defective item i is masked by PD \ {i}
in the test matrix.

• We used independent sub-matrices Xj ’s so that we can study the above error

event for Xj and build our way up.
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Analysis Outline of the DD Algorithm

• For a given Xj and a defective item i, the error event can be simplified in the

following manner:

• Hence, the error probability can be upper bounded by

P
[
i masked by S \ {i}

]
+ P

[
i masked by G|i not masked by S \ {i}

]
.
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Analysis Outline of the DD Algorithm

• Conditioned on the #positive tests k(1− δ) and the size of G, we can upper

bound P
[
i masked by S \ {i}

]
+ P

[
i masked by G|i not masked by S \ {i}

]
.

• This gives us the upper bound 2δk
k + |G|

k(1−2δ) .
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Analysis Outline of the DD Algorithm

• We have an upper bound on the error probability for a given sub-matrix Xj

and defective item i.

• Recall that we need the error probability to hold for the entire test matrix and

for any defective item.

I Extend to entire test matrix: Repeatedly multiply c times (by independence

of sub-matrices).

I Extend to any defective item: Multiply by k (by union bound).

• Finally, we choose an appropriate c such that the final upper bound is

vanishing (as n→∞).
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Summary

• We used

I independent doubly-constrained sub-matrices;

I the DD algorithm.

• We showed that this improves the constant term in the achievability result.
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