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Mixed Linear Regression (MLR)

Model. Heterogenous unlabeled data:

Each observation Yi,....Y,, comes from one of L regressors
pW. . B e RP, but we don't know which one.

Y; = (Xy, BW)ei 4 -+ (X5, B + e, i€ [nl.

For each ¢, exactly one of (¢;1,...,¢) is 1, the rest are O.
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Figure 1. MLR example with two components and p = 1. The line, obtained via
ordinary least squares, shows that standard linear regression is inadequate here.

Goal. Estimate multiple signals (regressors) sV, ... &) € RP from ob-
servations Yy, ...,Y, and feature vectors X, ..., X, € RP,
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State Evolution Theorem

1. Novel approximate message passing (AMP) algorithm for MLR
— Can be tailored to take advantage of prior information on signals
- Per-iteration complexity O(np)

2. Rigorous performance characterization for AMP via state evolution in
the high-dimensional limit as n,p — oo, with n/p — 9
- Precise asymptotics for MSE and correlation of AMP iterates with
signals

Approximate Message Passing

Main assumptions:

* Features X; ~iia. M(0,1,/n). Asn,p — oo, we have n/p — 0
= Limiting distribution of the rows of B exists and follows B

Theorem. For any pseudo-Lipschitz ¢,

- Z ¢(BI, B)) — E[p(M" B + G, B)],
] 1
where G ~ N(0, T%), and the parameters M%,, T% ¢
puted via a deterministic state evolution recursion.
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Normalized squared correlation. By choosing a suitable ¢, we can
compute the asymptotic correlation between each signal and its AMP
estimate. For iteration k and signal 5
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Choice of denoisers. The state evolution parameters depend on
choice of fi, g.. We propose:

fiu(s) =E[B | M5B + G% = s
gr(u, y):COV[Z\Zk:u] ( [Z]Zk:u,l_/:y]—

which minimizes the effective noise in each iteration.
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Proof idea

Mixed Linear Regression via Approximate Message Passing

Gaussian Prior Plots

AMP algorithm: Starting with initial guess B fork >0, compute:

Ek_1<Fk)T, Ek _ gk(@k,Y),
- B"C")', B! = fin(BM).

oF = XBF —
Bk+l _ XTE]C

= [teratively produces estimates B* of B
= Denoisers g and fi are Lipschitz and applied component-wise
= CF =130 g0, V) and FM = 2378 | fi (B

MLR is an instance of a Matrix Generalized Linear Model with latent
variables.

Let B = [pW, ..., BW)] be the signal matrix and ¥, an auxiliary vector.
The matrix GLM model is:

Y = q(B'X;, 1),
where ¢ is a known output function.
To get the MLR, take B = (B, ..., By and U; = (cit, . . ., ¢, €).

Proof idea. Establish state evolution result for AMP for matrix GLM via
reduction to an abstract AMP [1].
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Numerical Simulations

Model choice. We look at the two-component case:

Y; = (X;, BY)ei + (X5, B - ¢) + e
where ¢; ~i;q. Bernoulli(a), with « € (0,1), and ¢; ~i;.q. N(0, 0?).
Standard Gaussian prior. Independent signals with

BV, B ~iia N(0,1), 5 € [pl.

For each setting, we plot:

= Empirical normalized squared correlation (labeled 'AMP’)
= Theoretical normalized squared correlation (labeled 'SE’)
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Figure 2. Normalized squared correlation vs. § for various noise levels o, with o = 0.7
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Figure 3. Comparison of different estimators; Normalized squared correlation vs. 4,
with e = 0.6, and ¢ = 0.
AMP significantly outperforms other popular technigues:

Spectral estimator, Alternating Minimization, Expectation-Maximization

Summary

= Novel AMP algorithm for mixed linear regression
= Sharp asymptotic guarantees via state evolution

= Algorithm and guarantees can be generalized to any instance of
matrix GLM, e.g., max-affine regression, mixture-of-experts 2]
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