
Mixed Linear Regression via Approximate Message Passing
Nelvin Tan Ramji Venkataramanan

Mixed Linear Regression (MLR)

Model. Heterogenous unlabeled data:

Each observation Y1, . . . , Yn comes from one of L regressors

β(1), . . . , β(L) ∈ Rp, but we don’t know which one.

Yi = 〈Xi, β(1)〉ci1 + · · · + 〈Xi, β(L)〉ciL + εi , i ∈ [n].
For each i, exactly one of (ci1, . . . , ciL) is 1, the rest are 0.
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Figure 1. MLR example with two components and p = 1. The line, obtained via

ordinary least squares, shows that standard linear regression is inadequate here.

Goal. Estimate multiple signals (regressors) β(1), . . . , β(L) ∈ Rp from ob-

servations Y1, . . . , Yn and feature vectors X1, . . . , Xn ∈ Rp.

Main contributions

1. Novel approximate message passing (AMP) algorithm for MLR

– Can be tailored to take advantage of prior information on signals

– Per-iteration complexity O(np)

2. Rigorous performance characterization for AMP via state evolution in

the high-dimensional limit as n, p → ∞, with n/p → δ

– Precise asymptotics for MSE and correlation of AMP iterates with

signals

Approximate Message Passing

AMP algorithm: Starting with initial guess B̂0, for k ≥ 0, compute:

Θk = XB̂k − R̂k−1(F k)>, R̂k = gk(Θk, Y ),
Bk+1 = X>R̂k − B̂k(Ck)>, B̂k+1 = fk+1(Bk+1).

Iteratively produces estimates B̂k of B

Denoisers gk and fk+1 are Lipschitz and applied component-wise

Ck = 1
n

∑n
i=1 g′

k(Θk
i , Yi) and F k+1 = 1

n

∑p
j=1 f ′

k+1(Bk+1
j )

State Evolution Theorem

Main assumptions:

Features Xi ∼i.i.d. N (0, Ip/n). As n, p → ∞, we have n/p → δ
Limiting distribution of the rows of B exists and follows B̄

Theorem. For any pseudo-Lipschitz φ,

1
p

p∑
j=1

φ(Bk+1
j , Bj) → E[φ(Mk+1

B B̄ + Gk+1
B , B̄)],

whereGk+1
B ∼ N (0, Tk

B), and the parametersMk
B, Tk

B ∈ RL×L are com-

puted via a deterministic state evolution recursion.

Normalized squared correlation. By choosing a suitable φ, we can

compute the asymptotic correlation between each signal and its AMP

estimate. For iteration k and signal β(l):

〈β̂(l),k, β(l)〉2

‖β̂(l),k‖2
2 ‖β(1)‖2

2︸ ︷︷ ︸
empirical

→ E[fk,l(Mk
BB̄ + Gk

B)B̄l])2

E[fk,l(Mk
BB̄ + Gk

B)2 E[B̄2
l ]︸ ︷︷ ︸

theoretical

.

Choice of denoisers. The state evolution parameters depend on

choice of fk, gk. We propose:

fk(s) = E[B̄ | Mk
BB̄ + Gk

B = s]
gk(u, y) = Cov[Z | Zk = u]−1(E[Z | Zk = u, Ȳ = y] − E[Z | Zk = u]

)
,

which minimizes the effective noise in each iteration.

Proof idea

MLR is an instance of a Matrix Generalized Linear Model with latent

variables.

Let B = [β(1), . . . , β(L)] be the signal matrix and Ψi an auxiliary vector.

The matrix GLM model is:

Yi = q(B>Xi, Ψi), i ∈ [n],
where q is a known output function.

To get the MLR, take B = (β(1), . . . , β(L)) and Ψi = (ci1, . . . , ciL, εi).
Proof idea. Establish state evolution result for AMP for matrix GLM via

reduction to an abstract AMP [1].

Numerical Simulations

Model choice. We look at the two-component case:

Yi = 〈Xi, β(1)〉ci + 〈Xi, β(2)〉(1 − ci) + εi,

where ci ∼i.i.d. Bernoulli(α), with α ∈ (0, 1), and εi ∼i.i.d. N (0, σ2).
Standard Gaussian prior. Independent signals with

β
(1)
j , β

(2)
j ∼i.i.d. N (0, 1), j ∈ [p].

Gaussian Prior Plots

For each setting, we plot:

Empirical normalized squared correlation (labeled ’AMP’)

Theoretical normalized squared correlation (labeled ’SE’)
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Figure 2. Normalized squared correlation vs. δ for various noise levels σ, with α = 0.7
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Figure 3. Comparison of different estimators; Normalized squared correlation vs. δ,
with α = 0.6, and σ = 0.

AMP significantly outperforms other popular techniques:

Spectral estimator, Alternating Minimization, Expectation-Maximization

Summary

Novel AMP algorithm for mixed linear regression

Sharp asymptotic guarantees via state evolution

Algorithm and guarantees can be generalized to any instance of

matrix GLM, e.g., max-affine regression, mixture-of-experts [2]
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