Approximate Message Passing for Matrix Regression Thesis Defense

Nelvin Tan

Signal Processing and Communications Laboratory, University of Cambridge

October 2024

	(c
Nelvin Lan	(ambridge)
	(cambridge)

1/23

The thesis consists of joint work with:

- Ramji Venkataramanan (University of Cambridge)
- Pablo Pascual Cobo (University of Cambridge)
- Jonathan Scarlett (National University of Singapore)

Image: A math the second se

Standard Generalized Linear Model (GLM)

- Model. $y_i = q(\beta^T X_{i,:}, \psi_i)$ for $i \in [n] := \{1, ..., n\}$.
 - $X_{i,:}$ is the *i*th row of the design matrix $X \in \mathbb{R}^{n \times p}$.
 - y_i is the *i*th entry of the observation $y \in \mathbb{R}^n$.
 - ψ_i is the *i*th entry of the noise $\psi \in \mathbb{R}^n$.
 - $\beta \in \mathbb{R}^p$ is the target signal.
 - $q: \mathbb{R}^2 \to \mathbb{R}$ is a known function.
- **Goal.** Given X and y, estimate β .
- Applications:
 - Linear model: Compressed sensing and sparse regression codes.
 - Phase retrieval: Optics and X-ray crystallography.
 - Logistic regression: Fraud detection and disease prediction.

Standard Generalized Linear Model (GLM)

- Model. $y_i = q(\beta^T X_{i,:}, \psi_i)$ for $i \in [n] := \{1, ..., n\}.$
 - $X_{i,:}$ is the *i*th row of the design matrix $X \in \mathbb{R}^{n \times p}$.
 - y_i is the *i*th entry of the observation $y \in \mathbb{R}^n$.
 - ψ_i is the *i*th entry of the noise $\psi \in \mathbb{R}^n$.
 - $\blacktriangleright \ \beta \in \mathbb{R}^p \text{ is the target signal.}$
 - $q: \mathbb{R}^2 \to \mathbb{R}$ is a known function.
- **Goal.** Given X and y, estimate β .
- Applications:
 - Linear model: Compressed sensing and sparse regression codes.
 - Phase retrieval: Optics and X-ray crystallography.
 - Logistic regression: Fraud detection and disease prediction.

Standard Generalized Linear Model (GLM)

- Model. $y_i = q(\beta^T X_{i,:}, \psi_i)$ for $i \in [n] := \{1, ..., n\}.$
 - $X_{i,:}$ is the *i*th row of the design matrix $X \in \mathbb{R}^{n \times p}$.
 - y_i is the *i*th entry of the observation $y \in \mathbb{R}^n$.
 - ψ_i is the *i*th entry of the noise $\psi \in \mathbb{R}^n$.
 - $\blacktriangleright \ \beta \in \mathbb{R}^p \text{ is the target signal.}$
 - $q: \mathbb{R}^2 \to \mathbb{R}$ is a known function.
- **Goal.** Given X and y, estimate β .
- Applications:
 - Linear model: Compressed sensing and sparse regression codes.
 - Phase retrieval: Optics and X-ray crystallography.
 - Logistic regression: Fraud detection and disease prediction.

High-Dimensional Regime

- Motivated by massive data sets in recent times.
- #features is of comparable size, or larger, than #observations.
- Specifically, $n/p \to \delta \in (0,\infty)$ as $n, p \to \infty$.
- Common approaches when data has some form of structure:
 - Feature selection (e.g., forward/backward selection) then estimate.
 - Feature reduction (e.g., principal component analysis) then estimate.
 - Incorporate signal structure into estimation (this thesis).

< □ > < 同 > < 回 > < 回 >

High-Dimensional Regime

- Motivated by massive data sets in recent times.
- #features is of comparable size, or larger, than #observations.
- Specifically, $n/p \to \delta \in (0,\infty)$ as $n, p \to \infty$.
- Common approaches when data has some form of structure:
 - ▶ Feature selection (e.g., forward/backward selection) then estimate.
 - Feature reduction (e.g., principal component analysis) then estimate.
 - Incorporate signal structure into estimation (this thesis).

Matrix Generalized Linear Model (GLM)

$$Y = \begin{bmatrix} -Y_{1,:} - \\ \vdots \\ -Y_{n,:} - \end{bmatrix}, \quad X = \begin{bmatrix} -X_{1,:} - \\ \vdots \\ -X_{n,:} - \end{bmatrix}, \quad \Psi = \begin{bmatrix} -\Psi_{1,:} - \\ \vdots \\ -\Psi_{n,:} - \end{bmatrix}$$

• Model.
$$Y_{i,:} = q(B^{\top}X_{i,:}, \Psi_{i,:})$$
 for $i \in [n]$.

- Observation $Y \in \mathbb{R}^{n \times L_{out}}$.
- Auxiliary matrix $\Psi \in \mathbb{R}^{n \times L_{\Psi}}$.
- Matrix signal $B \in \mathbb{R}^{p \times L}$.
- $q: \mathbb{R}^L \times \mathbb{R}^{L_\Psi} \to \mathbb{R}^{L_{out}}$ is a known function.
- **Goal.** Given X and Y, estimate B.
- Applications. Mixed regression, quantitative group testing, pooled data.

Matrix Generalized Linear Model (GLM)

$$Y = \begin{bmatrix} -Y_{1,:} - \\ \vdots \\ -Y_{n,:} - \end{bmatrix}, \quad X = \begin{bmatrix} -X_{1,:} - \\ \vdots \\ -X_{n,:} - \end{bmatrix}, \quad \Psi = \begin{bmatrix} -\Psi_{1,:} - \\ \vdots \\ -\Psi_{n,:} - \end{bmatrix}$$

• Model.
$$Y_{i,:} = q(B^{\top}X_{i,:}, \Psi_{i,:})$$
 for $i \in [n]$.

- Observation $Y \in \mathbb{R}^{n \times L_{out}}$.
- Auxiliary matrix $\Psi \in \mathbb{R}^{n \times L_{\Psi}}$.
- Matrix signal $B \in \mathbb{R}^{p \times L}$.
- $q: \mathbb{R}^L \times \mathbb{R}^{L_\Psi} \to \mathbb{R}^{L_{out}}$ is a known function.
- **Goal.** Given X and Y, estimate B.
- Applications. Mixed regression, quantitative group testing, pooled data.

(日) (四) (日) (日) (日)

Approximate Message Passing for Mixed Regression

(日) (四) (日) (日) (日)

Approximate Message Passing (AMP)

• AMP algorithm:

$$\begin{split} \Theta^k &= X \widehat{B}^k - \widehat{R}^{k-1} (F^k)^\top, \quad \widehat{R}^k = g_k(\Theta^k, Y), \\ B^{k+1} &= X^\top \widehat{R}^k - \widehat{B}^k (C^k)^\top, \quad \widehat{B}^{k+1} = f_{k+1} (B^{k+1}). \end{split}$$

$$C^k &= \frac{1}{n} \sum_{i=1}^n g'_k(\Theta^k_i, Y_i) \text{ and } F^{k+1} = \frac{1}{n} \sum_{j=1}^p f'_{k+1} (B^{k+1}_j). \end{split}$$

$$\text{Iteratively produces estimates } \widehat{B}^k \text{ of } B. \end{split}$$

• Denoisers g_k and f_{k+1} are Lipschitz and applied component wise.

• Main assumptions:

- As $n, p \to \infty$, we have $n/p = \delta > 0$;
- $\blacktriangleright X_{i,:} \sim_{\text{i.i.d.}} \mathcal{N}(0, I_p/n);$
- Empirical distribution of the rows of B converge to \overline{B} .

Approximate Message Passing (AMP)

AMP algorithm:

$$\Theta^{k} = X\widehat{B}^{k} - \widehat{R}^{k-1}(F^{k})^{\top}, \quad \widehat{R}^{k} = g_{k}(\Theta^{k}, Y),$$
$$B^{k+1} = X^{\top}\widehat{R}^{k} - \widehat{B}^{k}(C^{k})^{\top}, \quad \widehat{B}^{k+1} = f_{k+1}(B^{k+1}).$$

•
$$C^k = \frac{1}{n} \sum_{i=1}^n g'_k(\Theta^k_i, Y_i) \text{ and } F^{k+1} = \frac{1}{n} \sum_{j=1}^p f'_{k+1}(B^{k+1}_j).$$

lteratively produces estimates \hat{B}^k of B.

• Denoisers g_k and f_{k+1} are Lipschitz and applied component wise.

• Main assumptions:

- As $n, p \to \infty$, we have $n/p = \delta > 0$;
- $\blacktriangleright X_{i,:} \sim_{\text{i.i.d.}} \mathcal{N}(0, I_p/n);$
- Empirical distribution of the rows of B converge to \overline{B} .

7/23

イロト イポト イヨト イヨト

• Theorem. The empirical joint distribution of the rows of $\begin{array}{l} \left(B,B^{k+1}\right) \rightarrow \left(\bar{B},\bar{B}^{k+1}\right), \quad \bar{B}^{k+1} \coloneqq \mathrm{M}_{B}^{k+1}\bar{B} + G_{B}^{k+1} \\ \text{where } G_{B}^{k+1} \sim \mathcal{N}(0,\mathrm{T}_{B}^{k+1}) \text{ and the state evolution parameters} \\ \mathrm{M}_{B}^{k},\mathrm{T}_{B}^{k} \in \mathbb{R}^{L \times L} \text{ are defined as } \left(g_{k-1} \coloneqq g_{k-1}(Z^{k-1},q(Z.\bar{\Psi}))\right) \\ \mathrm{M}_{B}^{k} \equiv \mathbb{E}\left[\partial_{Z}g_{k-1}\right] \text{ and } \mathrm{T}_{B}^{k} = \mathbb{E}\left[g_{k-1}g_{k-1}^{\top}\right], \end{array}$

where Z and Z^k are the limiting distributions of $\Theta = XB$ and Θ^k .

• Choice of denoisers. We propose:

 $f_k(s) = \mathbb{E}[\bar{B} \mid \mathcal{M}_B^k \bar{B} + G_B^k = s]$

 $g_k(u, y) = \mathbb{E}[Z \mid Z^k = u, \overline{Y} = y] - \mathbb{E}[Z \mid Z^k = u],$

which minimizes the effective noise in each iteration.

• **Proof idea.** Via reduction of our AMP to an abstract AMP [Feng et al. 2022].

э

• Theorem. The empirical joint distribution of the rows of $\begin{array}{l} \left(B,B^{k+1}\right) \rightarrow \left(\bar{B},\bar{B}^{k+1}\right), \quad \bar{B}^{k+1} := \mathrm{M}_{B}^{k+1}\bar{B} + G_{B}^{k+1} \\ \text{where } G_{B}^{k+1} \sim \mathcal{N}(0,\mathrm{T}_{B}^{k+1}) \text{ and the state evolution parameters} \\ \mathrm{M}_{B}^{k},\mathrm{T}_{B}^{k} \in \mathbb{R}^{L \times L} \text{ are defined as } \left(g_{k-1} := g_{k-1}(Z^{k-1},q(Z.\bar{\Psi}))\right) \\ \mathrm{M}_{B}^{k} = \mathbb{E}\left[\partial_{Z}g_{k-1}\right] \text{ and } \mathrm{T}_{B}^{k} = \mathbb{E}\left[g_{k-1}g_{k-1}^{\top}\right], \end{array}$

where Z and Z^k are the limiting distributions of $\Theta = XB$ and Θ^k .

• Choice of denoisers. We propose:

$$f_k(s) = \mathbb{E}[\bar{B} \mid \mathcal{M}_B^k \bar{B} + G_B^k = s]$$

$$g_k(u, y) = \mathbb{E}[Z \mid Z^k = u, \bar{Y} = y] - \mathbb{E}[Z \mid Z^k = u],$$

which minimizes the effective noise in each iteration.

• **Proof idea.** Via reduction of our AMP to an abstract AMP [Feng et al. 2022].

э

• Theorem. The empirical joint distribution of the rows of $\begin{array}{l} \left(B,B^{k+1}\right) \rightarrow \left(\bar{B},\bar{B}^{k+1}\right), \quad \bar{B}^{k+1} := \mathrm{M}_{B}^{k+1}\bar{B} + G_{B}^{k+1} \\ \text{where } G_{B}^{k+1} \sim \mathcal{N}(0,\mathrm{T}_{B}^{k+1}) \text{ and the state evolution parameters} \\ \mathrm{M}_{B}^{k},\mathrm{T}_{B}^{k} \in \mathbb{R}^{L \times L} \text{ are defined as } \left(g_{k-1} := g_{k-1}(Z^{k-1},q(Z.\bar{\Psi}))\right) \\ \mathrm{M}_{B}^{k} = \mathbb{E}\left[\partial_{Z}g_{k-1}\right] \text{ and } \mathrm{T}_{B}^{k} = \mathbb{E}\left[g_{k-1}g_{k-1}^{\top}\right], \end{array}$

where Z and Z^k are the limiting distributions of $\Theta = XB$ and Θ^k .

• Choice of denoisers. We propose:

$$f_k(s) = \mathbb{E}[\bar{B} \mid \mathcal{M}_B^k \bar{B} + G_B^k = s]$$

$$g_k(u, y) = \mathbb{E}[Z \mid Z^k = u, \bar{Y} = y] - \mathbb{E}[Z \mid Z^k = u],$$

which minimizes the effective noise in each iteration.

 Proof idea. Via reduction of our AMP to an abstract AMP [Feng et al. 2022].

э

8/23

Numerical Simulations – Mixed Linear Regression

- Model. $y_i = \langle X_{i,:}, \beta^{(1)} \rangle c_{i1} + \dots + \langle X_{i,:}, \beta^{(L)} \rangle c_{iL} + \epsilon_i$ for $i \in [n]$
 - Observation $y \in \mathbb{R}^n$, signal $\beta^{(l)} \in \mathbb{R}^p$, noise $\epsilon \in \mathbb{R}^n$.
 - Latent variables $c_{i1}, \ldots, c_{iL} \in \{0, 1\}$ such that $\sum_{l=1}^{L} c_{il} = 1$.
 - Used when data comes from unknown sub-populations.
- Reduction to matrix GLM. $B = (\beta^{(1)}, \dots, \beta^{(L)}), \Psi_{i,:} = (c_{i1}, \dots, c_{iL}, \epsilon_i)$
- Other models. Max-affine regression, mixed GLM, mixture-of-experts

• • • • • • • • • • • •

Numerical Simulations – Mixed Linear Regression

- Model. $y_i = \langle X_{i,:}, \beta^{(1)} \rangle c_{i1} + \dots + \langle X_{i,:}, \beta^{(L)} \rangle c_{iL} + \epsilon_i$ for $i \in [n]$
 - Observation $y \in \mathbb{R}^n$, signal $\beta^{(l)} \in \mathbb{R}^p$, noise $\epsilon \in \mathbb{R}^n$.
 - Latent variables $c_{i1}, \ldots, c_{iL} \in \{0, 1\}$ such that $\sum_{l=1}^{L} c_{il} = 1$.
 - Used when data comes from unknown sub-populations.
- Reduction to matrix GLM. $B = (\beta^{(1)}, \dots, \beta^{(L)}), \Psi_{i,:} = (c_{i1}, \dots, c_{iL}, \epsilon_i)$
- Other models. Max-affine regression, mixed GLM, mixture-of-experts

< □ > < 同 > < 三

Two-component case for simulation:

$$Y_i = \langle X_i, \beta^{(1)} \rangle c_i + \langle X_i, \beta^{(2)} \rangle (1 - c_i) + \epsilon_i,$$

where $c_i \sim_{i.i.d.} \text{Bernoulli}(\alpha)$, with $\alpha \in (0,1)$, and $\epsilon_i \sim_{i.i.d.} \mathcal{N}(0,\sigma^2)$.

• Gaussian prior. The prior distribution of the two signals follows $(\beta_j^{(1)}, \beta_j^{(2)}) \sim_{\text{i.i.d.}} \mathcal{N}\left(\begin{bmatrix} 0\\ 0 \end{bmatrix}, \begin{bmatrix} 1, \rho\\ \rho, 1 \end{bmatrix} \right), \quad j \in [p]$

- Plots. For each setting in the plots, we plot
 - Empirical normalized squared correlation (labeled as 'AMP');
 - Theoretical normalized squared correlation (labeled as 'SE').

10/23

イロト イボト イヨト イヨト

Two-component case for simulation:

$$Y_i = \langle X_i, \beta^{(1)} \rangle c_i + \langle X_i, \beta^{(2)} \rangle (1 - c_i) + \epsilon_i,$$

where $c_i \sim_{i.i.d.} \text{Bernoulli}(\alpha)$, with $\alpha \in (0,1)$, and $\epsilon_i \sim_{i.i.d.} \mathcal{N}(0,\sigma^2)$.

• **Gaussian prior.** The prior distribution of the two signals follows $(\rho^{(1)}, \rho^{(2)}) = \bigwedge \left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1, \rho \end{bmatrix} \right)$

$$(\beta_j^{(1)}, \beta_j^{(2)}) \sim_{\text{i.i.d.}} \mathcal{N}\left(\begin{bmatrix} 0\\0\end{bmatrix}, \begin{bmatrix} 1, p\\p, 1\end{bmatrix}\right), \quad j \in [p]$$

• **Plots.** For each setting in the plots, we plot

- Empirical normalized squared correlation (labeled as 'AMP');
- Theoretical normalized squared correlation (labeled as 'SE').

10/23

Two-component case for simulation:

$$Y_i = \langle X_i, \beta^{(1)} \rangle c_i + \langle X_i, \beta^{(2)} \rangle (1 - c_i) + \epsilon_i,$$

where $c_i \sim_{i.i.d.} \text{Bernoulli}(\alpha)$, with $\alpha \in (0,1)$, and $\epsilon_i \sim_{i.i.d.} \mathcal{N}(0,\sigma^2)$.

- $$\begin{split} \text{Normalized squared correlation. } \#\text{Categories} &= L \\ \underbrace{\frac{\langle \hat{\beta}^{(l),k}, \beta^{(l)} \rangle^2}{\|\hat{\beta}^{(l),k}\|_2^2 \cdot \|\beta^{(1)}\|_2^2}}_{\text{empirical}} \to \underbrace{\frac{(\mathbb{E}[f_{k,l}(\bar{B}^k)\bar{B}_l])^2}{\mathbb{E}[f_{k,l}(\bar{B}^k)^2] \cdot \mathbb{E}[\bar{B}_l^2]}}_{\text{theoretical}}, \quad \text{for } l \in [L] \end{split}$$
- Gaussian prior. The prior distribution of the two signals follows $(\beta_j^{(1)}, \beta_j^{(2)}) \sim_{\text{i.i.d.}} \mathcal{N}\left(\begin{bmatrix} 0\\0\\\rho,1 \end{bmatrix} \right), \quad j \in [p]$
- **Plots.** For each setting in the plots, we plot
 - Empirical normalized squared correlation (labeled as 'AMP');
 - Theoretical normalized squared correlation (labeled as 'SE').

Two-component case for simulation:

$$Y_i = \langle X_i, \beta^{(1)} \rangle c_i + \langle X_i, \beta^{(2)} \rangle (1 - c_i) + \epsilon_i,$$

where $c_i \sim_{i.i.d.} \text{Bernoulli}(\alpha)$, with $\alpha \in (0,1)$, and $\epsilon_i \sim_{i.i.d.} \mathcal{N}(0,\sigma^2)$.

- $$\begin{split} \text{Normalized squared correlation. } \#\text{Categories} &= L \\ \underbrace{\frac{\langle \hat{\beta}^{(l),k}, \beta^{(l)} \rangle^2}{\|\hat{\beta}^{(l),k}\|_2^2 \cdot \|\beta^{(1)}\|_2^2}}_{\text{empirical}} \to \underbrace{\frac{(\mathbb{E}[f_{k,l}(\bar{B}^k)\bar{B}_l])^2}{\mathbb{E}[f_{k,l}(\bar{B}^k)^2] \cdot \mathbb{E}[\bar{B}_l^2]}}_{\text{theoretical}}, \quad \text{for } l \in [L] \end{split}$$
- Gaussian prior. The prior distribution of the two signals follows $(\beta_j^{(1)}, \beta_j^{(2)}) \sim_{\text{i.i.d.}} \mathcal{N}\left(\begin{bmatrix} 0\\0\\\rho,1 \end{bmatrix} \right), \quad j \in [p]$
- Plots. For each setting in the plots, we plot
 - Empirical normalized squared correlation (labeled as 'AMP');
 - Theoretical normalized squared correlation (labeled as 'SE').

(a) $\beta^{(1)}$ (b) $\beta^{(2)}$ Figure: Normalized squared correlation vs. δ , with different values of signal covariance ρ , $\alpha = 0.7$, $\sigma = 0$.

< □ > < □ > < □ > < □ > < □ >

(a) $\beta^{(1)}$ (b) $\beta^{(2)}$ Figure: Normalized squared correlation vs. δ , with different values of signal covariance ρ , $\alpha = 0.7$, $\sigma = 0$.

(a) $\beta^{(1)}$ (b) $\beta^{(2)}$ Figure: Comparison of different estimators; Normalized squared correlation vs. δ , with $\rho = 0$, $\alpha = 0.6$, and $\sigma = 0$.

Nelvin Tan (Cambridge)

11/23

AMP for Pooled Data and QGT with i.i.d. Bernoulli Design

Image: A math the second se

Application: Quantitative Group Testing (QGT)

- Setup:
 - ▶ Given *p* items, where *d* are defective, recover the defective set.
 - Each test returns the number of defective items in the test.
 - Goal. Minimize number of pooled tests n required.
- **Medical use.** Aim to find the infected people and each test outputs the number of infected people (e.g., viral load) in the test.
- Model. $y = X\beta$ where $y \in \mathbb{R}^n$, $X \in \{0,1\}^{n \times p}$, and $\beta \in \{0,1\}^p$.

イロト イヨト イヨト

э

Application: Quantitative Group Testing (QGT)

- Setup:
 - ▶ Given *p* items, where *d* are defective, recover the defective set.
 - Each test returns the number of defective items in the test.
 - Goal. Minimize number of pooled tests n required.
- **Medical use.** Aim to find the infected people and each test outputs the number of infected people (e.g., viral load) in the test.
- Model. $y = X\beta$ where $y \in \mathbb{R}^n$, $X \in \{0,1\}^{n \times p}$, and $\beta \in \{0,1\}^p$.

Application: Quantitative Group Testing (QGT)

- Setup:
 - Given p items, where d are defective, recover the defective set.
 - Each test returns the number of defective items in the test.
 - Goal. Minimize number of pooled tests n required.
- Medical use. Aim to find the infected people and each test outputs the number of infected people (e.g., viral load) in the test.
- Model. $y = X\beta$ where $y \in \mathbb{R}^n$, $X \in \{0,1\}^{n \times p}$, and $\beta \in \{0,1\}^p$.

イロン イロン イヨン イヨン

э

Application: Pooled Data

- Setup. Y = XB, generalization of QGT
 - Items have more than 2 categories; QGT = pooled data with 2 categories.
 - Each test returns the total number of items corresponding to each category that are present in the pool.
 - Goal. Minimize the number of pooled test required.
- Medical use:
 - Each person has one out of several diseases.
 - We want to recover the disease each person is infected with.

Application: Pooled Data

• Setup. Y = XB, generalization of QGT

- Items have more than 2 categories; QGT = pooled data with 2 categories.
- Each test returns the total number of items corresponding to each category that are present in the pool.
- Goal. Minimize the number of pooled test required.
- Medical use:
 - Each person has one out of several diseases.
 - We want to recover the disease each person is infected with.

AMP with Generalized White Noise Design

- Issue. Matrix-AMP algorithm for mixed regression requires Gaussian entries while QGT and pooled data require binary entries.
- Algorithm. Same as the one for matrix GLM but with a different design matrix X

 X .
- Generalized white noise matrix $\widetilde{X} \in \mathbb{R}^{n \times p}$:
 - All entries \widetilde{X}_{ij} are independent, have zero mean, and bounded moments.
 - Example: Sub-Gaussian entries.
- QGT $y = X\beta$ and pooled data Y = XB with a Bernoulli design X can be recentered and rescaled to give $\tilde{y} = \tilde{X}\beta$ and $\tilde{Y} = \tilde{X}B$ resp.

AMP with Generalized White Noise Design

- Issue. Matrix-AMP algorithm for mixed regression requires Gaussian entries while QGT and pooled data require binary entries.
- Algorithm. Same as the one for matrix GLM but with a different design matrix X

 X .
- Generalized white noise matrix $\widetilde{X} \in \mathbb{R}^{n \times p}$:
 - All entries \widetilde{X}_{ij} are independent, have zero mean, and bounded moments.
 - Example: Sub-Gaussian entries.
- QGT $y = X\beta$ and pooled data Y = XB with a Bernoulli design X can be recentered and rescaled to give $\tilde{y} = \widetilde{X}\beta$ and $\widetilde{Y} = \widetilde{X}B$ resp.

AMP with Generalized White Noise Design

- Issue. Matrix-AMP algorithm for mixed regression requires Gaussian entries while QGT and pooled data require binary entries.
- Algorithm. Same as the one for matrix GLM but with a different design matrix X

 X .
- Generalized white noise matrix $\widetilde{X} \in \mathbb{R}^{n \times p}$:
 - All entries \widetilde{X}_{ij} are independent, have zero mean, and bounded moments.
 - Example: Sub-Gaussian entries.
- QGT $y = X\beta$ and pooled data Y = XB with a Bernoulli design X can be recentered and rescaled to give $\tilde{y} = \tilde{X}\beta$ and $\tilde{Y} = \tilde{X}B$ resp.

- Theorem. The empirical joint distribution of the rows of $(B, B^{k+1}) \rightarrow (\bar{B}, \bar{B}^{k+1}), \quad \bar{B}^{k+1} := M_B^{k+1}\bar{B} + G_B^{k+1}$ where \bar{B} is independent of $G_B^{k+1} \sim \mathcal{N}(0, T_B^{k+1})$ and the state evolution parameters M_B^k , T_B^k are defined previously.
- Choice of denoiser. Defined previously.
- **Proof idea.** Via reduction to an abstract AMP iteration, and applying the universality result of [Wang et al. 2022].
- Our result makes the previous AMP performance guarantees in [Alaoui et al. 2018] rigorous.
- Performance measure. Normalized correlation

$$\frac{1}{p} \sum_{j=1}^{p} \langle \widehat{B}_{j,:}^{k}, B_{j,:} \rangle \to \mathbb{E} \Big[\langle f_{k}(\overline{B}^{k}), \overline{B} \rangle \Big].$$

3

- Theorem. The empirical joint distribution of the rows of $(B, B^{k+1}) \rightarrow (\bar{B}, \bar{B}^{k+1}), \quad \bar{B}^{k+1} := M_B^{k+1}\bar{B} + G_B^{k+1}$ where \bar{B} is independent of $G_B^{k+1} \sim \mathcal{N}(0, T_B^{k+1})$ and the state evolution parameters M_B^k , T_B^k are defined previously.
- Choice of denoiser. Defined previously.
- **Proof idea.** Via reduction to an abstract AMP iteration, and applying the universality result of [Wang et al. 2022].
- Our result makes the previous AMP performance guarantees in [Alaoui et al. 2018] rigorous.
- Performance measure. Normalized correlation

$$\frac{1}{p} \sum_{j=1}^{p} \langle \widehat{B}_{j,:}^{k}, B_{j,:} \rangle \to \mathbb{E} \Big[\langle f_{k}(\overline{B}^{k}), \overline{B} \rangle \Big].$$

- Theorem. The empirical joint distribution of the rows of $(B, B^{k+1}) \rightarrow (\bar{B}, \bar{B}^{k+1}), \quad \bar{B}^{k+1} := M_B^{k+1}\bar{B} + G_B^{k+1}$ where \bar{B} is independent of $G_B^{k+1} \sim \mathcal{N}(0, T_B^{k+1})$ and the state evolution parameters M_B^k , T_B^k are defined previously.
- Choice of denoiser. Defined previously.
- **Proof idea.** Via reduction to an abstract AMP iteration, and applying the universality result of [Wang et al. 2022].
- Our result makes the previous AMP performance guarantees in [Alaoui et al. 2018] rigorous.
- Performance measure. Normalized correlation

$$\frac{1}{p} \sum_{j=1}^{p} \langle \widehat{B}_{j,:}^{k}, B_{j,:} \rangle \to \mathbb{E} \Big[\langle f_{k}(\bar{B}^{k}), \bar{B} \rangle \Big].$$

16/23

- Theorem. The empirical joint distribution of the rows of $(B, B^{k+1}) \rightarrow (\bar{B}, \bar{B}^{k+1}), \quad \bar{B}^{k+1} := M_B^{k+1}\bar{B} + G_B^{k+1}$ where \bar{B} is independent of $G_B^{k+1} \sim \mathcal{N}(0, T_B^{k+1})$ and the state evolution parameters M_B^k , T_B^k are defined previously.
- Choice of denoiser. Defined previously.
- **Proof idea.** Via reduction to an abstract AMP iteration, and applying the universality result of [Wang et al. 2022].
- Our result makes the previous AMP performance guarantees in [Alaoui et al. 2018] rigorous.
- Performance measure. Normalized correlation

$$\frac{1}{p} \sum_{j=1}^{p} \langle \widehat{B}_{j,:}^{k}, B_{j,:} \rangle \to \mathbb{E} \Big[\langle f_{k}(\bar{B}^{k}), \bar{B} \rangle \Big].$$

16/23

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(a) $\sigma = 0$ (b) $\sigma = 0.1$ (c) $\sigma = 0.3$

Figure: AMP vs. other algorithms for pooled data: normalized correlation vs. δ , with L = 3 and $\pi = [1/3, 1/3, 1/3]$. The plots are similar for the case of non-uniform priors.

- Algorithms. linear programming (LP), convex optimization (CVX), iterative hard thresholding (IHT)
- AMP generally outperforms other algorithms.
- CVX is better than AMP for low δ when there is noise (why?)

17/23

< □ > < 同 > < 回 > < 回 >

(a) $\sigma = 0$ (b) $\sigma = 0.1$ (c) $\sigma = 0.3$

Figure: AMP vs. other algorithms for pooled data: normalized correlation vs. δ , with L = 3 and $\pi = [1/3, 1/3, 1/3]$. The plots are similar for the case of non-uniform priors.

- Algorithms. linear programming (LP), convex optimization (CVX), iterative hard thresholding (IHT)
- AMP generally outperforms other algorithms.
- CVX is better than AMP for low δ when there is noise (why?)

(日) (四) (日) (日) (日)

AMP for QGT and Pooled Data with Spatially Coupled Design

(日) (四) (日) (日) (日)

Improvement: Spatial Coupling Design

- Enforce a blockwise band-diagonal structure in X.
- All entries in X are either 0 or Bernoulli.

- R: Number of row blocks.
- C: Number of column blocks.
 - ω: Coupling width.
- Relation: $R = C + \omega 1$

- Visual representation of a ($\omega = 3, C = 7$) spatially coupled matrix.
- Additional tests associated to first and last entries of β. Edge entries recovered first, neighboring entries progressively reconstructed.

Improvement: Spatial Coupling Design

- Enforce a blockwise band-diagonal structure in X.
- All entries in X are either 0 or Bernoulli.

- R: Number of row blocks.
- C: Number of column blocks.
- ω : Coupling width.
- Relation: $R = C + \omega 1$

- Visual representation of a ($\omega = 3, C = 7$) spatially coupled matrix.
- Additional tests associated to first and last entries of β. Edge entries recovered first, neighboring entries progressively reconstructed.

Spatially Coupled (SC) AMP

- AMP algorithm. Iteratively produces estimates $\hat{\beta}^k$ of β . $\widetilde{\Theta}^k = \widetilde{y} - \widetilde{X}^{\mathrm{sc}} \hat{\beta}^k + b^k \odot Q^k \odot \widetilde{\Theta}^{k-1}, \ \beta^{k+1} = (\widetilde{X}^{\mathrm{sc}})^\top (Q^k \odot \widetilde{\Theta}^k) - c^k \odot \hat{\beta}^k$
- Signal estimate. $\hat{\beta}^{k+1} = f_{k+1}(\beta^{k+1}, c).$
 - ▶ b^k determined by derivative of $f_k(\beta^k, c)$.
 - \tilde{y} , \tilde{X}^{sc} recentered and rescaled versions of y and X.
 - Q^k , c^k defined via state evolution parameters.
 - f_k Lipschitz denoiser, applied component wise.
- State evolution parameters: $\chi^k_1,...,\chi^k_{\mathsf{C}}$
- Theorem. For each block c ∈ [C], the empirical joint distribution of
 (β_c, β^k_c) → (β
 (β
 (β^k_c), β^k_c), β^k_c := (χ^k_c)²β
 (β^k_c), ζ^k_cG,

where $\bar{\beta} \sim \text{Bernoulli}(\pi)$ is independent of $G \sim \mathcal{N}(0, 1)$.

- Choice of denoiser. $f_k(s, c) = \mathbb{E}[\bar{\beta}|(\chi_c^k)^2\bar{\beta} + \chi_c^k G = s]$
- **Proof idea.** Via reduction to an abstract AMP iteration, and applying the universality result of [Wang et al. 2022].

Nelvin Tan (Cambridge)

Spatially Coupled (SC) AMP

- AMP algorithm. Iteratively produces estimates $\hat{\beta}^k$ of β . $\widetilde{\Theta}^k = \widetilde{y} - \widetilde{X}^{\mathrm{sc}} \hat{\beta}^k + b^k \odot Q^k \odot \widetilde{\Theta}^{k-1}, \ \beta^{k+1} = (\widetilde{X}^{\mathrm{sc}})^\top (Q^k \odot \widetilde{\Theta}^k) - c^k \odot \hat{\beta}^k$
- Signal estimate. $\hat{\beta}^{k+1} = f_{k+1}(\beta^{k+1}, c).$
 - b^k determined by derivative of $f_k(\beta^k, c)$.
 - \tilde{y} , \tilde{X}^{sc} recentered and rescaled versions of y and X.
 - Q^k , c^k defined via state evolution parameters.
 - f_k Lipschitz denoiser, applied component wise.
- State evolution parameters: $\chi^k_1,...,\chi^k_{\rm C}$
- Theorem. For each block $c \in [C],$ the empirical joint distribution of

$$(\beta_{\mathsf{c}},\beta_{\mathsf{c}}^k) \to (\bar{\beta},\bar{\beta}_{\mathsf{c}}^k), \quad \bar{\beta}_{\mathsf{c}}^k := (\chi_{\mathsf{c}}^k)^2 \bar{\beta} + \chi_{\mathsf{c}}^k G,$$

where $\bar{\beta} \sim \text{Bernoulli}(\pi)$ is independent of $G \sim \mathcal{N}(0, 1)$.

- Choice of denoiser. $f_k(s, c) = \mathbb{E}[\bar{\beta}|(\chi_c^k)^2\bar{\beta} + \chi_c^k G = s]$
- **Proof idea.** Via reduction to an abstract AMP iteration, and applying the universality result of [Wang et al. 2022].

Nelvin Tan (Cambridge)

AMP for Matrix Regression

20/23

Spatially Coupled (SC) AMP

- AMP algorithm. Iteratively produces estimates $\hat{\beta}^k$ of β . $\widetilde{\Theta}^k = \widetilde{y} - \widetilde{X}^{\mathrm{sc}} \hat{\beta}^k + b^k \odot Q^k \odot \widetilde{\Theta}^{k-1}, \ \beta^{k+1} = (\widetilde{X}^{\mathrm{sc}})^\top (Q^k \odot \widetilde{\Theta}^k) - c^k \odot \hat{\beta}^k$
- Signal estimate. $\hat{\beta}^{k+1} = f_{k+1}(\beta^{k+1}, c).$
 - b^k determined by derivative of $f_k(\beta^k, c)$.
 - \tilde{y} , \tilde{X}^{sc} recentered and rescaled versions of y and X.
 - Q^k , c^k defined via state evolution parameters.
 - f_k Lipschitz denoiser, applied component wise.
- State evolution parameters: $\chi^k_1,...,\chi^k_{\rm C}$
- Theorem. For each block $c \in [C]$, the empirical joint distribution of

$$(\beta_{\mathsf{c}},\beta_{\mathsf{c}}^k) \to (\bar{\beta},\bar{\beta}_{\mathsf{c}}^k), \quad \bar{\beta}_{\mathsf{c}}^k := (\chi_{\mathsf{c}}^k)^2 \bar{\beta} + \chi_{\mathsf{c}}^k G,$$

where $\bar{\beta} \sim \text{Bernoulli}(\pi)$ is independent of $G \sim \mathcal{N}(0, 1)$.

- Choice of denoiser. $f_k(s, c) = \mathbb{E}[\bar{\beta}|(\chi_c^k)^2 \bar{\beta} + \chi_c^k G = s]$
- **Proof idea.** Via reduction to an abstract AMP iteration, and applying the universality result of [Wang et al. 2022].

Nelvin Tan (Cambridge)

• **Theorem.** For any sampling ratio $n/p \rightarrow \delta > 0$ and $\omega = o(C)$, the SC-AMP estimate $\hat{\beta}$ achieves almost-exact recovery

$$\lim_{k,\omega,p\to\infty}\frac{1}{p}\sum_{j=1}^{p}\mathbb{1}\left\{\hat{\beta}_{j}^{k}\neq\beta_{j}\right\}=0,$$

with n = o(p) tests.

Proof idea. Apply previous theorem and

- Characterize fixed points $\lim_{k\to\infty}(\chi_1^k,\ldots,\chi_C^k)$ via minimum of a potential
- Use above point to show that the asymptotic MSE vanishes for noiseless QGT.
- Pooled data. Run SC-AMP column-wise on Y.

October 2024

Theorem. For any sampling ratio n/p → δ > 0 and ω = o(C), the SC-AMP estimate β̂ achieves almost-exact recovery

$$\lim_{k,\omega,p\to\infty}\frac{1}{p}\sum_{j=1}^p\mathbb{1}\left\{\hat{\beta}_j^k\neq\beta_j\right\}=0,$$

with n = o(p) tests.

- Proof idea. Apply previous theorem and
 - Characterize fixed points lim_{k→∞}(χ^k₁,..., χ^k_C) via minimum of a potential function [Yedla et al. 2014].
 - Use above point to show that the asymptotic MSE vanishes for noiseless QGT.
- **Pooled data.** Run SC-AMP column-wise on \widetilde{Y} .
- Performance measure. Normalized squared correlation:

$$\underbrace{\frac{\langle \hat{\beta}^{k}, \beta \rangle}{\|\hat{\beta}^{k}\|_{2}^{2} \cdot \|\beta\|_{2}^{2}}}_{\text{empirical}} \rightarrow \underbrace{\frac{(\frac{1}{C} \sum_{c=1}^{C} \mathbb{E}[f_{k}(\bar{\beta}^{k}_{c}, c) \cdot \bar{\beta}])^{2}}{(\frac{1}{C} \sum_{c=1}^{C} \mathbb{E}[f_{k}(\bar{\beta}^{k}_{c}, c)^{2}]) \cdot (\mathbb{E}[\bar{\beta}^{2}])}_{\text{theoretical}}}_{\text{theoretical}}$$

Theorem. For any sampling ratio n/p → δ > 0 and ω = o(C), the SC-AMP estimate β̂ achieves almost-exact recovery

$$\lim_{k,\omega,p\to\infty}\frac{1}{p}\sum_{j=1}^p\mathbb{1}\left\{\hat{\beta}_j^k\neq\beta_j\right\}=0,$$

with n = o(p) tests.

- Proof idea. Apply previous theorem and
 - Characterize fixed points lim_{k→∞}(χ^k₁,..., χ^k_C) via minimum of a potential function [Yedla et al. 2014].
 - Use above point to show that the asymptotic MSE vanishes for noiseless QGT.
- **Pooled data.** Run SC-AMP column-wise on \widetilde{Y} .

Theorem. For any sampling ratio n/p → δ > 0 and ω = o(C), the SC-AMP estimate β̂ achieves almost-exact recovery

$$\lim_{k,\omega,p\to\infty}\frac{1}{p}\sum_{j=1}^p\mathbb{1}\left\{\hat{\beta}_j^k\neq\beta_j\right\}=0,$$

with n = o(p) tests.

- Proof idea. Apply previous theorem and
 - Characterize fixed points lim_{k→∞}(χ^k₁,..., χ^k_C) via minimum of a potential function [Yedla et al. 2014].
 - Use above point to show that the asymptotic MSE vanishes for noiseless QGT.
- **Pooled data.** Run SC-AMP column-wise on \widetilde{Y} .
- Performance measure. Normalized squared correlation:

- Linear programming (LP). Implemented LP using the i.i.d. matrix (iid LP) and spatially coupled matrix with (ω = 6, C = 40) (SC LP).
- Information theoretic lower bound. $n^* = 2H(\pi)p/\ln p$.

- Spatially coupled AMP (SC-AMP) outperforms iid AMP and LP.
- As we increase coupling dimensions (ω, C), spatially coupled state evolution (SC-SE) approaches lower bound.

Nelvin Tan (Cambridge)

AMP for Matrix Regression

Linear programming (LP). Implemented LP using the i.i.d. matrix (iid LP) and spatially coupled matrix with (ω = 6, C = 40) (SC LP).

• Information theoretic lower bound. $n^* = 2H(\pi)p/\ln p$.

(a) AMP vs. LP (b) SC-AMP vs. i.i.d. AMP Figure: SC-AMP, iid AMP, and n^*/p used p = 20000, SC LP and iid LP used p = 2000. Defective probability π =0.3.

- Spatially coupled AMP (SC-AMP) outperforms iid AMP and LP.
- As we increase coupling dimensions (ω, C), spatially coupled state evolution (SC-SE) approaches lower bound.

Nelvin Tan (Cambridge)

Summary

- (Ch. 2) Extend AMP to account for matrix signals. To this end, we considered the matrix GLM model. Applied AMP to mixed regression.
- (Ch. 3) Extend AMP to account for generalized white noise design matrices under the matrix GLM model. Applied AMP to QGT and pooled data.
- (Ch. 4) Improve the performance of AMP for QGT and pooled data by considering a spatially coupled Bernoulli test matrix. We also extend the AMP algorithm to account for this matrix.

Summary

- (Ch. 2) Extend AMP to account for matrix signals. To this end, we considered the matrix GLM model. Applied AMP to mixed regression.
- (Ch. 3) Extend AMP to account for generalized white noise design matrices under the matrix GLM model. Applied AMP to QGT and pooled data.
- (Ch. 4) Improve the performance of AMP for QGT and pooled data by considering a spatially coupled Bernoulli test matrix. We also extend the AMP algorithm to account for this matrix.

イロト イボト イヨト イヨト

Summary

- (Ch. 2) Extend AMP to account for matrix signals. To this end, we considered the matrix GLM model. Applied AMP to mixed regression.
- (Ch. 3) Extend AMP to account for generalized white noise design matrices under the matrix GLM model. Applied AMP to QGT and pooled data.
- (Ch. 4) Improve the performance of AMP for QGT and pooled data by considering a spatially coupled Bernoulli test matrix. We also extend the AMP algorithm to account for this matrix.

(日) (四) (日) (日) (日)