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Standard Generalized Linear Model (GLM)

® Model. y; = q(87 X;.,¢;) fori € [n] :={1,...,n}.
» X, . is the ith row of the design matrix X € R™"*?.
» 1y, is the ith entry of the observation y € R".
» 4); is the ith entry of the noise ¢ € R".
> 3 € R? is the target signal.
>

g :R? = Ris a known function.
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Standard Generalized Linear Model (GLM)

® Model. y; = q(87 X;.,¢;) fori € [n] :={1,...,n}.
» X, . is the ith row of the design matrix X € R™"*?.
» 1y, is the ith entry of the observation y € R".
» 4); is the ith entry of the noise ¢ € R".
> 3 € R? is the target signal.
>

g :R? = Ris a known function.

® Goal. Given X and y, estimate 3.
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Standard Generalized Linear Model (GLM)

® Model. y; = q(87 X;.,¢;) fori € [n] :={1,...,n}.
» X, . is the ith row of the design matrix X € R™"*?.
» 1y, is the ith entry of the observation y € R".
» 4); is the ith entry of the noise ¢ € R".
> 3 € RP? is the target signal.
> ¢:R? = Ris a known function.
® Goal. Given X and y, estimate 3.
e Applications:
» Linear model: Compressed sensing and sparse regression codes.
» Phase retrieval: Optics and X-ray crystallography.

> Logistic regression: Fraud detection and disease prediction.
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High-Dimensional Regime
I - B
y X

® Motivated by massive data sets in recent times.

e Specifically, n/p — § € (0,00) as n,p — oo.

® Hfeatures is of comparable size, or larger, than #observations.
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High-Dimensional Regime
I - B
y X

Motivated by massive data sets in recent times.

® Hfeatures is of comparable size, or larger, than #observations.

Specifically, n/p — § € (0,00) as n,p — oo.

Common approaches when data has some form of structure:

> Feature selection (e.g., forward/backward selection) then estimate.
> Feature reduction (e.g., principal component analysis) then estimate.

» Incorporate signal structure into estimation (this thesis).

[} = =
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Matrix Generalized Linear Model (GLM)

® Model. Y;. =q(B"X;.,¥;.) for i € [n].
> Observation Y € R™* Lout,
> Auxiliary matrix ¥ € R™*Lv,
> Matrix signal B € RPXE,

> ¢:RY x REY — RIow js a known function.
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Matrix Generalized Linear Model (GLM)

® Model. Y;. =q(B"X;.,¥;.) for i € [n].
> Observation Y € R™* Lout,
> Auxiliary matrix ¥ € R™*Lv,
> Matrix signal B € RPXE,

> ¢:RY x REY — RIow js a known function.

® Goal. Given X and Y, estimate B.

® Applications. Mixed regression, quantitative group testing, pooled data.
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Approximate Message Passing

for Mixed Regression
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Approximate Message Passing (AMP)

°* AMP algorithm:
oF — XBk _ ]’%k—l(Fk)T, RF = g:(0F,Y),
B = XTRF - BHCH)T,  BM = fia(BMY).
> CF =3 gk(OF,Y:) and FFT = 2570 fL (BT,

> lteratively produces estimates B* of B.

» Denoisers g, and fr41 are Lipschitz and applied component wise.
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Approximate Message Passing (AMP)

°* AMP algorithm:
ok — X§k . ﬁk—l(Fk)T, ﬁk _ gk(Gk, Y),
Bk+1 _ XTﬁk o Ek(ck)T, Ek—i—l _ fk+1(Bk+1)'
> O = %Z?:l g@(@f,Yi) and F*H! = % ?zl fl/c-&-l(B,;H—l)'
> [teratively produces estimates B* of B.

» Denoisers g, and fr41 are Lipschitz and applied component wise.
® Main assumptions:

> Asn,p — oo, we have n/p =9 > 0;
> X;. ~iia. N(0,I,/n);

» Empirical distribution of the rows of B converge to B.
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State Evolution Result

® Theorem. The empirical joint distribution of the rows of
(B, B*1) 5 (B, BMY),  BFH .= M5B 4 G
where G ~ N(0, T%!) and the state evolution parameters
Mk Tk € REXL are defined as (gx—1 := gr—1(Z%71,¢(Z.1)))
Mp =E[0zgk-1] and T = E[gr—194_1],
where Z and Z* are the limiting distributions of @ = X B and ©F.
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State Evolution Result

® Theorem. The empirical joint distribution of the rows of
(B,B*') — (B,B*), BF!.=MENB 4 G
where G ~ N(0, T%!) and the state evolution parameters
Mk Tk € REXL are defined as (gx—1 := gr—1(Z%71,¢(Z.1)))
M}y = E[0zgc1] and T = E[gr-19/{ 1],
where Z and ZF are the limiting distributions of © = X B and ©F.
® Choice of denoisers. We propose:
fe(s) =E[B | MEB + G = 4]
gr(u, y) =EB[Z | ZF =,V =y - E[Z | ZF = u],

which minimizes the effective noise in each iteration.
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State Evolution Result

® Theorem. The empirical joint distribution of the rows of
(B,B*') — (B,B*), BF!.=MENB 4 G
where G ~ N(0, T%!) and the state evolution parameters
Mk Tk € REXL are defined as (gx—1 := gr—1(Z%71,¢(Z.1)))
M}y = E[0zgc1] and T = E[gr-19/{ 1],
where Z and ZF are the limiting distributions of © = X B and ©F.
® Choice of denoisers. We propose:
fe(s) =E[B | MEB + G = 4]
gr(u, y) =B[Z | ZF =u,Y =y] - E[Z | Z* = u],

which minimizes the effective noise in each iteration.

® Proof idea. Via reduction of our AMP to an abstract AMP [Feng et al.

2022].
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Numerical Simulations — Mixed Linear Regression

0.30 035 040 045 050 0.55 0.60 0.65

X

e Model. Y; = <X¢’:,,8(1)>Ci1 —+ -4+ <Xi7;,ﬁ(L)>CiL +€; for i € [n]
> Observation y € R”, signal 3% € RP, noise € € R™.
> Latent variables c;1, ..., cir, € {0,1} such that >, ¢y = 1.

» Used when data comes from unknown sub-populations.
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Numerical Simulations — Mixed Linear Regression

0.30 035 040 045 050 0.55 0.60 0.65

X
° Model. Yi = (Xi’:,ﬁ(1)>ci1 + -4+ <Xi7;,ﬁ(L)>CiL + €; fOI’ 7 € [n]
> Observation y € R”, signal 3% € RP, noise € € R™.
> Latent variables c¢;1,...,cir € {0,1} such that 32/, ¢q = 1.

» Used when data comes from unknown sub-populations.
® Reduction to matrix GLM. B = (3 ... BU)), U, . = (¢;1,...,cip,€)

® Other models. Max-affine regression, mixed GLM, mixture-of-experts
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Numerical Simulations
® Two-component case for simulation:

Y = (X, B)e; + (X3, BO)V1 — e) + s,
where ¢; ~;; 4. Bernoulli(a), with a € (0,1), and €; ~i;.a. N(0,02).
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Numerical Simulations

® Two-component case for simulation:
Y; = (X5, BM)e; + (X, BV — i) + &,

where ¢; ~ji;.4. Bernoulli(a), with o € (0, 1), and €; ~i;.q. N(0,0?).

® Normalized squared correlation. #Categories = L
GO AYR (Bl (BB
|BOXE 503 Elfsa(BY)?]-E[B7)

empirical theoretical

for I € [L]
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Numerical Simulations

® Two-component case for simulation:

Y, = <X¢,,3(1)>ci + <Xi75(2)>(1 —¢)+ €,

where ¢; ~ji;.4. Bernoulli(a), with o € (0, 1), and €; ~i;.q. N(0,0?).

® Normalized squared correlation. #Categories = L
GO AYR (Bl (BB
13O+ 18013 Elfii(B?]-ELB)

for I € [L]

empirical theoretical

® Gaussian prior. The prior distribution of the two signals follows

(ﬁj('l)wﬁj@)) ~iid N <[gl , le]) , JeElp
p,1
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Numerical Simulations

® Two-component case for simulation:

Y; = (X4, BVVe; + (X4, BNV — &) + 4,

where ¢; ~ji;.4. Bernoulli(a), with o € (0, 1), and €; ~i;.q. N(0,0?).

® Normalized squared correlation. #Categories = L
GO AYR (Bl (BB
13O+ 18013 Elfii(B?]-ELB)

for I € [L]

empirical theoretical

® Gaussian prior. The prior distribution of the two signals follows

(ﬂj('l)vﬁj@)) ~iid N <[gl , le]) , JeElp
p,1

® Plots. For each setting in the plots, we plot

» Empirical normalized squared correlation (labeled as 'AMP");

» Theoretical normalized squared correlation (labeled as 'SE’).
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Numerical Simulations
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Figure: Normalized squared correlation vs. §, with different values of signal covariance p,

a=0.7 0=0.
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Numerical Simulations
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Figure: Normalized squared correlation vs. §, with different values of signal covariance p,
a=0.7,0=0.
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Figure: Comparison of different estimators; Normalized squared correlation vs. §, with
p=0,a=0.6,and 0 = 0.
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AMP for Pooled Data and QGT
with i.i.d. Bernoulli Design
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Application: Quantitative Group Testing (QGT)

Tests ‘
||

items T I T W W]

® Setup:

Observations

o]~ [oo]- o

> Given p items, where d are defective, recover the defective set.
» Each test returns the number of defective items in the test.

» Goal. Minimize number of pooled tests n required.
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Application: Quantitative Group Testing (QGT)

Tests ‘
||

items T I T W W]

® Setup:

Observations

o]~ [oo]- o

> Given p items, where d are defective, recover the defective set.
» Each test returns the number of defective items in the test.
» Goal. Minimize number of pooled tests n required.
® Medical use. Aim to find the infected people and each test outputs the

number of infected people (e.g., viral load) in the test.
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Application: Quantitative Group Testing (QGT)

Tests ‘
||

items T I T W W]

® Setup:

Observations

o]~ [oo]- o

> Given p items, where d are defective, recover the defective set.
» Each test returns the number of defective items in the test.

» Goal. Minimize number of pooled tests n required.

® Medical use. Aim to find the infected people and each test outputs the

number of infected people (e.g., viral load) in the test.

® Model. y = X3 where y € R", X € {0,1}"*?, and 3 € {0,1}".
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Application: Pooled Data

010001 |0 0
00110 1| =12 »
10001 1 1
BT 0 Yi,: 1 2 3 Category
X

~

® Setup. Y = X B, generalization of QGT
» Items have more than 2 categories; QGT = pooled data with 2 categories.
» Each test returns the total number of items corresponding to each category

that are present in the pool.
» Goal. Minimize the number of pooled test required.
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Application: Pooled Data

010001 |0 0
00110 1| =12 ‘
10001 1 1
BT 0 Yi,: 1 2 3 Category
X

~

® Setup. Y = X B, generalization of QGT
» Items have more than 2 categories; QGT = pooled data with 2 categories.
» Each test returns the total number of items corresponding to each category

that are present in the pool.
» Goal. Minimize the number of pooled test required.

® Medical use:
» Each person has one out of several diseases.
> We want to recover the disease each person is infected with.
October 2024 14 /23
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AMP with Generalized White Noise Design

® Issue. Matrix-AMP algorithm for mixed regression requires Gaussian entries

while QGT and pooled data require binary entries.
® Algorithm. Same as the one for matrix GLM but with a different design

matrix X.

Nelvin Tan (Cambridge) AMP for Matrix Regression October 2024 15/23



AMP with Generalized White Noise Design

® |ssue. Matrix-AMP algorithm for mixed regression requires Gaussian entries
while QGT and pooled data require binary entries.

® Algorithm. Same as the one for matrix GLM but with a different design
matrix X.

e Generalized white noise matrix X € R"*?:

» All entries X;; are independent, have zero mean, and bounded moments.

» Example: Sub-Gaussian entries.
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AMP with Generalized White Noise Design

® |ssue. Matrix-AMP algorithm for mixed regression requires Gaussian entries

while QGT and pooled data require binary entries.

® Algorithm. Same as the one for matrix GLM but with a different design
matrix X.
e Generalized white noise matrix X € R"*?;

» All entries X;; are independent, have zero mean, and bounded moments.

» Example: Sub-Gaussian entries.

QGT y = X and pooled data Y = X B with a Bernoulli design X can be
recentered and rescaled to give y = )?6 and Y = XB resp.
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State Evolution Result

® Theorem. The empirical joint distribution of the rows of
(B, B**Y) — (B, B¥Y), BMl.= MK B GhH
where B is independent of G ~ A/(0, T) and the state evolution

parameters M%, T% are defined previously.
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State Evolution Result

® Theorem. The empirical joint distribution of the rows of
k B Bk Rk k+1 5 k
(B, B*) — (B, B¥Y),  BM1.= ML B+ G
where B is independent of G?‘l ~ N(O,T?‘l) and the state evolution

parameters M¥, T’fg are defined previously.
® Choice of denoiser. Defined previously.

® Proof idea. Via reduction to an abstract AMP iteration, and applying the
universality result of [Wang et al. 2022].
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State Evolution Result

® Theorem. The empirical joint distribution of the rows of
k B Bk Rk k+1 5 k
(B, B*) — (B, B¥Y),  BM1.= ML B+ G
where B is independent of G?‘l ~ N(O,T%H) and the state evolution

parameters M¥, T’fg are defined previously.

Choice of denoiser. Defined previously.

Proof idea. Via reduction to an abstract AMP iteration, and applying the
universality result of [Wang et al. 2022].

Our result makes the previous AMP performance guarantees in [Alaoui et

al. 2018] rigorous.
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State Evolution Result

® Theorem. The empirical joint distribution of the rows of
(B, B**Y) — (B, B¥Y), BMl.= MK B GhH
where B is independent of G?‘l ~ N(O,T?‘l) and the state evolution

parameters M¥, T’fg are defined previously.

Choice of denoiser. Defined previously.

Proof idea. Via reduction to an abstract AMP iteration, and applying the
universality result of [Wang et al. 2022].

Our result makes the previous AMP performance guarantees in [Alaoui et

al. 2018] rigorous.

Performance measure Normalized correlation

Z B;.) ~ E[(f(B"), B)|.
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Numerical Simulations
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Figure: AMP vs. other algorithms for pooled data: normalized correlation vs. §, with
L =3and m=[1/3,1/3,1/3]. The plots are similar for the case of non-uniform priors.

® Algorithms. linear programming (LP), convex optimization (CVX), iterative

hard thresholding (IHT)
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Numerical Simulations
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Figure: AMP vs. other algorithms for pooled data: normalized correlation vs. §, with
L =3and m=[1/3,1/3,1/3]. The plots are similar for the case of non-uniform priors.

® Algorithms. linear programming (LP), convex optimization (CVX), iterative
hard thresholding (IHT)

® AMP generally outperforms other algorithms.

® CVX is better than AMP for low § when there is noise (why?)
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AMP for QGT and Pooled Data
with Spatially Coupled Design
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Improvement: Spatial Coupling Design

® Enforce a blockwise band-diagonal structure in X.
® All entries in X are either 0 or Bernoulli.

p/C

B R: Number of row blocks.

n R * C:Number of column blocks.
- EHEE *  w: Coupling width.
1 * Relationn R=C+w — 1
] Base matrix W

x| 3

Design matrix X 5¢

® Visual representation of a (w = 3,C = 7) spatially coupled matrix.
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Improvement: Spatial Coupling Design

® Enforce a blockwise band-diagonal structure in X.
® All entries in X are either 0 or Bernoulli.

p/C

B * R:Number of row blocks.

n R * C:Number of column blocks.
- EHEE *  w: Coupling width.
1 * Relationn R=C+w — 1
] Base matrix W

x| 3

Design matrix X 5¢

® Visual representation of a (w = 3,C = 7) spatially coupled matrix.

e Additional tests associated to first and last entries of 5. Edge entries

recovered first, neighboring entries progressively reconstructed.
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Spatially Coupled (SC) AMP
® AMP algorithm. lteratively produces estimates Bk of 3.
oF — - f(sch N NoYeLEo) ék—l’ gr+1 — (X'SC)T(Q’C ® ék) oY
* Signal estimate. B+ = f,_ (BF ¢).
> b* — determined by derivative of fi(5%,c).
> 7, X®¢ — recentered and rescaled versions of y and X.

> Q% ¢* — defined via state evolution parameters.

» fi — Lipschitz denoiser, applied component wise.
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Spatially Coupled (SC) AMP
® AMP algorithm. lteratively produces estimates Bk of 3.
oF — - )?sch N NoYeLEo) 'C:)k—l’ gr+1 — (X'SC)T(Q’C ® ék) oY
* Signal estimate. B+ = f,_ (BF ¢).
> b* — determined by derivative of fi(5%,c).
> 7, X®¢ — recentered and rescaled versions of y and X.

> Q% ¢* — defined via state evolution parameters.

» fi — Lipschitz denoiser, applied component wise.
® State evolution parameters: ¥, ..., x&
® Theorem. For each block ¢ € [C], the empirical joint distribution of
(Be, B8) = (B, BE), BE = (x&)?B + xeG,
where 3 ~ Bernoulli(7) is independent of G' ~ N(0, 1).
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Spatially Coupled (SC) AMP

AMP algorithm. lteratively produces estimates Bk of 3.
OF = §— X¥B* 4 bF © QF © @k 1, g+l = (XSC) Q" Qék) — o gk
Signal estimate.  BFt! = fk+1(6k+1,c).
> b* — determined by derivative of fi(5%,c).
> 7, X®¢ — recentered and rescaled versions of y and X.
> Q% ¢* — defined via state evolution parameters.
» fi — Lipschitz denoiser, applied component wise.
State evolution parameters: x%, ..., x£
Theorem. For each block ¢ € [C], the empirical joint distribution of
(Bes BE) = (B, BE), B = (X&)?B+ XEG,
where 3 ~ Bernoulli(7) is independent of G' ~ N(0, 1).
Choice of denoiser. fi(s,c) = E[B|(x*)?5 + x*G = 5]
Proof idea. Via reduction to an abstract AMP iteration, and applying the
universality result of [Wang et al. 2022].
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Almost-Exact Recovery

® Theorem. For any sampling ratio n/p — ¢ > 0 and w = o(C), the SC-AMP

estimate 3 achieves almost-exact recovery

P
lim %Zn{ﬁf #B;} =0,
j=1

k,w,p—00

with n = o(p) tests.
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Almost-Exact Recovery

® Theorem. For any sampling ratio n/p — ¢ > 0 and w = o(C), the SC-AMP
estimate B achieves almost-exact recovery
1 & s
lim -y 1{p¥#p;} =
5 2 A ) =0
with n = o(p) tests.
® Proof idea. Apply previous theorem and

> Characterize fixed points limg o0 (X5, ..., XE) via minimum of a potential
function [Yedla et al. 2014].
» Use above point to show that the asymptotic MSE vanishes for noiseless QGT.
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Almost-Exact Recovery

® Theorem. For any sampling ratio n/p — ¢ > 0 and w = o(C), the SC-AMP

estimate B achieves almost-exact recovery
1 & s

lim - 1{p* 1=

pJim Zl {8} # 8} =0,

j=

with n = o(p) tests.
® Proof idea. Apply previous theorem and

> Characterize fixed points limg o0 (X5, ..., XE) via minimum of a potential
function [Yedla et al. 2014].
» Use above point to show that the asymptotic MSE vanishes for noiseless QGT.

e Pooled data. Run SC-AMP column-wise on Y.
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Almost-Exact Recovery

® Theorem. For any sampling ratio n/p — ¢ > 0 and w = o(C), the SC-AMP

estimate B achieves almost-exact recovery
1 & s
lim - 1{p* 1=
pJim Zl {8} # 8} =0,
j=

with n = o(p) tests.
® Proof idea. Apply previous theorem and

> Characterize fixed points limg o0 (X5, ..., XE) via minimum of a potential
function [Yedla et al. 2014].
» Use above point to show that the asymptotic MSE vanishes for noiseless QGT.

* Pooled data. Run SC-AMP column-wise on Y.
® Performance measure. Normalized squared correlation:
(B5,8) (& X Elfu(BE0) - B
IBMI3 - 1813, (& Xy Elf(BE, <)) - (E[52)

empirical theoretical
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Numerical Simulations

® Linear programming (LP). Implemented LP using the i.i.d. matrix (iid LP)
and spatially coupled matrix with (w = 6,C = 40) (SC LP).

¢ Information theoretic lower bound. n* = 2H (7)p/lnp.
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Figure: SC-AMP, iid AMP, and n*/p used p = 20000, SC LP and iid LP used p = 2000.
Defective probability m=0.3.

® Spatially coupled AMP (SC-AMP) outperforms iid AMP and LP.
® As we increase coupling dimensions (w, C), spatially coupled state evolution

(SC-SE) approaches lower bound.
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Summary

® (Ch. 2) Extend AMP to account for matrix signals. To this end, we
considered the matrix GLM model. Applied AMP to mixed regression.
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considered the matrix GLM model. Applied AMP to mixed regression.

® (Ch. 3) Extend AMP to account for generalized white noise design matrices
under the matrix GLM model. Applied AMP to QGT and pooled data.

® (Ch. 4) Improve the performance of AMP for QGT and pooled data by
considering a spatially coupled Bernoulli test matrix. We also extend the

AMP algorithm to account for this matrix.
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