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Standard Generalized Linear Model (GLM)

• Model. yi = q(β⊤Xi,:, ψi) for i ∈ [n] := {1, . . . , n}.
▶ Xi,: is the ith row of the design matrix X ∈ Rn×p.

▶ yi is the ith entry of the observation y ∈ Rn.

▶ ψi is the ith entry of the noise ψ ∈ Rn.

▶ β ∈ Rp is the target signal.

▶ q : R2 → R is a known function.

• Goal. Given X and y, estimate β.

• Applications:

▶ Linear model: Compressed sensing and sparse regression codes.

▶ Phase retrieval: Optics and X-ray crystallography.

▶ Logistic regression: Fraud detection and disease prediction.
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High-Dimensional Regime

• Motivated by massive data sets in recent times.

• #features is of comparable size, or larger, than #observations.

• Specifically, n/p→ δ ∈ (0,∞) as n, p→ ∞.

• Common approaches when data has some form of structure:

▶ Feature selection (e.g., forward/backward selection) then estimate.

▶ Feature reduction (e.g., principal component analysis) then estimate.

▶ Incorporate signal structure into estimation (this thesis).
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Matrix Generalized Linear Model (GLM)

Y =


−Y1,:−

...

−Yn,:−

 , X =


−X1,:−

...

−Xn,:−

 , Ψ =


−Ψ1,:−

...

−Ψn,:−

 .

• Model. Yi,: = q(B⊤Xi,:,Ψi,:) for i ∈ [n].

▶ Observation Y ∈ Rn×Lout .

▶ Auxiliary matrix Ψ ∈ Rn×LΨ .

▶ Matrix signal B ∈ Rp×L.

▶ q : RL × RLΨ → RLout is a known function.

• Goal. Given X and Y , estimate B.

• Applications. Mixed regression, quantitative group testing, pooled data.
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Approximate Message Passing

for Mixed Regression
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Approximate Message Passing (AMP)

• AMP algorithm:

Θk = XB̂k − R̂k−1(F k)⊤, R̂k = gk(Θ
k, Y ),

Bk+1 = X⊤R̂k − B̂k(Ck)⊤, B̂k+1 = fk+1(B
k+1).

▶ Ck = 1
n

∑n
i=1 g

′
k(Θ

k
i , Yi) and F

k+1 = 1
n

∑p
j=1 f

′
k+1(B

k+1
j ).

▶ Iteratively produces estimates B̂k of B.

▶ Denoisers gk and fk+1 are Lipschitz and applied component wise.

• Main assumptions:

▶ As n, p→ ∞, we have n/p = δ > 0;

▶ Xi,: ∼i.i.d. N (0, Ip/n);

▶ Empirical distribution of the rows of B converge to B̄.
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State Evolution Result

• Theorem. The empirical joint distribution of the rows of(
B,Bk+1

)
→
(
B̄, B̄k+1

)
, B̄k+1 := Mk+1

B B̄ +Gk+1
B

where Gk+1
B ∼ N (0,Tk+1

B ) and the state evolution parameters

Mk
B ,T

k
B ∈ RL×L are defined as (gk−1 := gk−1(Z

k−1, q(Z.Ψ̄)))

Mk
B = E

[
∂Zgk−1

]
and Tk

B = E
[
gk−1g

⊤
k−1

]
,

where Z and Zk are the limiting distributions of Θ = XB and Θk.

• Choice of denoisers. We propose:

fk(s) = E[B̄ | Mk
BB̄ +Gk

B = s]

gk(u, y) = E[Z | Zk = u, Ȳ = y]− E[Z | Zk = u],

which minimizes the effective noise in each iteration.

• Proof idea. Via reduction of our AMP to an abstract AMP [Feng et al.

2022].
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Numerical Simulations – Mixed Linear Regression

• Model. yi = ⟨Xi,:, β
(1)⟩ci1 + · · ·+ ⟨Xi,:, β

(L)⟩ciL + ϵi for i ∈ [n]

▶ Observation y ∈ Rn, signal β(l) ∈ Rp, noise ϵ ∈ Rn.

▶ Latent variables ci1, . . . , ciL ∈ {0, 1} such that
∑L

l=1 cil = 1.

▶ Used when data comes from unknown sub-populations.

• Reduction to matrix GLM. B = (β(1), . . . , β(L)), Ψi,: = (ci1, . . . , ciL, ϵi)

• Other models. Max-affine regression, mixed GLM, mixture-of-experts
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Numerical Simulations

• Two-component case for simulation:

Yi = ⟨Xi, β
(1)⟩ci + ⟨Xi, β

(2)⟩(1− ci) + ϵi,

where ci ∼i.i.d. Bernoulli(α), with α ∈ (0, 1), and ϵi ∼i.i.d. N (0, σ2).

• Normalized squared correlation. #Categories = L

⟨β̂(l),k, β(l)⟩2

∥β̂(l),k∥22 · ∥β(1)∥22︸ ︷︷ ︸
empirical

→ (E[fk,l(B̄k)B̄l])
2

E[fk,l(B̄k)2] · E[B̄2
l ]︸ ︷︷ ︸

theoretical

, for l ∈ [L]

• Gaussian prior. The prior distribution of the two signals follows

(β
(1)
j , β

(2)
j ) ∼i.i.d. N

([
0

0

]
,

[
1, ρ

ρ, 1

])
, j ∈ [p]

• Plots. For each setting in the plots, we plot

▶ Empirical normalized squared correlation (labeled as ’AMP’);

▶ Theoretical normalized squared correlation (labeled as ’SE’).
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Numerical Simulations
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Figure: Normalized squared correlation vs. δ, with different values of signal covariance ρ,
α = 0.7, σ = 0.
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Figure: Comparison of different estimators; Normalized squared correlation vs. δ, with
ρ = 0, α = 0.6, and σ = 0.
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AMP for Pooled Data and QGT

with i.i.d. Bernoulli Design
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Application: Quantitative Group Testing (QGT)

Items

Tests Observations
1

3

1

0

0

• Setup:

▶ Given p items, where d are defective, recover the defective set.

▶ Each test returns the number of defective items in the test.

▶ Goal. Minimize number of pooled tests n required.

• Medical use. Aim to find the infected people and each test outputs the

number of infected people (e.g., viral load) in the test.

• Model. y = Xβ where y ∈ Rn, X ∈ {0, 1}n×p, and β ∈ {0, 1}p.
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Application: Pooled Data

• Setup. Y = XB, generalization of QGT

▶ Items have more than 2 categories; QGT = pooled data with 2 categories.

▶ Each test returns the total number of items corresponding to each category

that are present in the pool.

▶ Goal. Minimize the number of pooled test required.

• Medical use:

▶ Each person has one out of several diseases.

▶ We want to recover the disease each person is infected with.
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AMP with Generalized White Noise Design

• Issue. Matrix-AMP algorithm for mixed regression requires Gaussian entries

while QGT and pooled data require binary entries.

• Algorithm. Same as the one for matrix GLM but with a different design

matrix X̃.

• Generalized white noise matrix X̃ ∈ Rn×p:

▶ All entries X̃ij are independent, have zero mean, and bounded moments.

▶ Example: Sub-Gaussian entries.

• QGT y = Xβ and pooled data Y = XB with a Bernoulli design X can be

recentered and rescaled to give ỹ = X̃β and Ỹ = X̃B resp.
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State Evolution Result

• Theorem. The empirical joint distribution of the rows of

(B,Bk+1) → (B̄, B̄k+1), B̄k+1 := Mk+1
B B̄ +Gk+1

B

where B̄ is independent of Gk+1
B ∼ N (0,Tk+1

B ) and the state evolution

parameters Mk
B , T

k
B are defined previously.

• Choice of denoiser. Defined previously.

• Proof idea. Via reduction to an abstract AMP iteration, and applying the

universality result of [Wang et al. 2022].

• Our result makes the previous AMP performance guarantees in [Alaoui et

al. 2018] rigorous.

• Performance measure. Normalized correlation
1

p

p∑
j=1

⟨B̂k
j,:, Bj,:⟩ → E

[〈
fk(B̄

k), B̄
〉]
.
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Numerical Simulations
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Figure: AMP vs. other algorithms for pooled data: normalized correlation vs. δ, with
L = 3 and π = [1/3, 1/3, 1/3]. The plots are similar for the case of non-uniform priors.

• Algorithms. linear programming (LP), convex optimization (CVX), iterative

hard thresholding (IHT)

• AMP generally outperforms other algorithms.

• CVX is better than AMP for low δ when there is noise (why?)
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AMP for QGT and Pooled Data

with Spatially Coupled Design
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Improvement: Spatial Coupling Design

• Enforce a blockwise band-diagonal structure in X.

• All entries in X are either 0 or Bernoulli.

• Visual representation of a (ω = 3,C = 7) spatially coupled matrix.

• Additional tests associated to first and last entries of β. Edge entries

recovered first, neighboring entries progressively reconstructed.
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Spatially Coupled (SC) AMP

• AMP algorithm. Iteratively produces estimates β̂k of β.

Θ̃k = ỹ − X̃scβ̂k + bk ⊙Qk ⊙ Θ̃k−1, βk+1 = (X̃sc)⊤(Qk ⊙ Θ̃k)− ck ⊙ β̂k

• Signal estimate. β̂k+1 = fk+1(β
k+1, c).

▶ bk – determined by derivative of fk(β
k, c).

▶ ỹ, X̃sc – recentered and rescaled versions of y and X.

▶ Qk, ck – defined via state evolution parameters.

▶ fk – Lipschitz denoiser, applied component wise.

• State evolution parameters: χk
1 , ..., χ

k
C

• Theorem. For each block c ∈ [C], the empirical joint distribution of

(βc, β
k
c ) → (β̄, β̄k

c ), β̄k
c := (χk

c )
2β̄ + χk

cG,

where β̄ ∼ Bernoulli(π) is independent of G ∼ N (0, 1).

• Choice of denoiser. fk(s, c) = E[β̄|(χk
c )

2β̄ + χk
cG = s]

• Proof idea. Via reduction to an abstract AMP iteration, and applying the

universality result of [Wang et al. 2022].
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Almost-Exact Recovery

• Theorem. For any sampling ratio n/p→ δ > 0 and ω = o(C), the SC-AMP

estimate β̂ achieves almost-exact recovery

lim
k,ω,p→∞

1

p

p∑
j=1

1
{
β̂k
j ̸= βj

}
= 0,

with n = o(p) tests.

• Proof idea. Apply previous theorem and

▶ Characterize fixed points limk→∞(χk
1 , . . . , χ

k
C) via minimum of a potential

function [Yedla et al. 2014].

▶ Use above point to show that the asymptotic MSE vanishes for noiseless QGT.

• Pooled data. Run SC-AMP column-wise on Ỹ .

• Performance measure. Normalized squared correlation:

⟨β̂k, β⟩
∥β̂k∥22 · ∥β∥22︸ ︷︷ ︸

empirical

→
( 1C
∑C

c=1 E[fk(β̄k
c , c) · β̄])2

( 1C
∑C

c=1 E[fk(β̄k
c , c)

2]) · (E[β̄2])︸ ︷︷ ︸
theoretical
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Numerical Simulations

• Linear programming (LP). Implemented LP using the i.i.d. matrix (iid LP)

and spatially coupled matrix with (ω = 6,C = 40) (SC LP).

• Information theoretic lower bound. n∗ = 2H(π)p/ln p.
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(a) AMP vs. LP
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(b) SC-AMP vs. i.i.d. AMP

Figure: SC-AMP, iid AMP, and n∗/p used p = 20000, SC LP and iid LP used p = 2000.
Defective probability π=0.3.

• Spatially coupled AMP (SC-AMP) outperforms iid AMP and LP.

• As we increase coupling dimensions (ω,C), spatially coupled state evolution

(SC-SE) approaches lower bound.
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Summary

• (Ch. 2) Extend AMP to account for matrix signals. To this end, we

considered the matrix GLM model. Applied AMP to mixed regression.

• (Ch. 3) Extend AMP to account for generalized white noise design matrices

under the matrix GLM model. Applied AMP to QGT and pooled data.

• (Ch. 4) Improve the performance of AMP for QGT and pooled data by

considering a spatially coupled Bernoulli test matrix. We also extend the

AMP algorithm to account for this matrix.
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