
SQL Cheat Sheet: FUNCTIONS and Implicit JOIN

Command Syntax Description Example

COUNT SELECT COUNT(column_name) FROM table_name
WHERE condition;

COUNT function returns the number of rows that
match a specified criterion. SELECT COUNT(dep_id) FROM employees;

AVG SELECT AVG(column_name) FROM table_name
WHERE condition;

AVG function returns the average value of a
numeric column. SELECT AVG(salary) FROM employees;

SUM SELECT SUM(column_name) FROM table_name
WHERE condition;

SUM function returns the total sum of a numeric
column. SELECT SUM(salary) FROM employees;

MIN SELECT MIN(column_name) FROM table_name
WHERE condition;

MIN function returns the smallest value of the
SELECTED column. SELECT MIN(salary) FROM employees;

MAX SELECT MAX(column_name) FROM table_name
WHERE condition;

MAX function returns the largest value of the
SELECTED column. SELECT MAX(salary) FROM employees;

ROUND SELECT ROUND(2number, decimals, operation)
AS RoundValue;

ROUND function rounds a number to a specified
number of decimal places. SELECT ROUND(salary) FROM employees;

LENGTH SELECT LENGTH(column_name) FROM table; LENGTH function returns the length of a string
(in bytes). SELECT LENGTH(f_name) FROM employees;

UCASE SELECT UCASE(column_name) FROM table; UCASE function displays the column name in
each table in uppercase. SELECT UCASE(f_name) FROM employees;

LCASE SELECT LCASE(column_name) FROM table; LCASE function displays the column name in
each table in lowercase. SELECT LCASE(f_name) FROM employees;

DISTINCT SELECT DISTINCT column_name FROM table; DISTINCT function is used to display data
without duplicates.

SELECT DISTINCT UCASE(f_name) FROM
employees;

DAY SELECT DAY(column_name) FROM table DAY function returns the day of the month for a
given date.

SELECT DAY(b_date) FROM employees where
emp_id = 'E1002';

CURRENT_DATE SELECT CURRENT_DATE; CURRENT_DATE is used to display the current
date. SELECT CURRENT_DATE;

DATEDIFF() SELECT DATEDIFF(date1, date2);

DATEDIFF() is used to calculate the difference
between two dates or time stamps. The default
value generated is the difference in number of
days.

SELECT DATEDIFF(CURRENT_DATE, date_column)
FROM table;

FROM_DAYS() SELECT FROM_DAYS(number_of_days); FROM_DAYS() is used to convert a given number
of days to YYYY-MM-DD format.

SELECT FROM_DAYS(DATEDIFF(CURRENT_DATE,
date_column)) FROM table;

DATE_ADD() SELECT DATE_ADD(date, INTERVAL n type);

DATE_ADD() is used to calculate the date after
lapse of mentioned number of units of date
type, i.e. if n=3 and type=DAY, the result is a
date 3 days after what is mentioned in date
column. The type valiable can also be months
or years.

SELECT DATE_ADD(date, INTERVAL 3 DAY);;

DATE_SUB() SELECT DATE_SUB(date, INTERVAL n type);

DATE_SUB() is used to calculate the date prior to
the record date by mentioned number of units
of date type, i.e. if n=3 and type=DAY, the
result is a date 3 days before what is
mentioned in date column. The type valiable
can also be months or years.

SELECT DATE_SUB(date, INTERVAL 3 DAY);;

Subquery
SELECT column_name [, column_name] FROM
table1 [, table2] WHERE column_name
OPERATOR (SELECT column_name [, column_name
] FROM table1 [, table2] [WHERE])

Subquery is a query within another SQL query
and embedded within the WHERE clause.

A subquery is used to return data that will be
used in the main query as a condition to further
restrict the data to be retrieved.

SELECT emp_id, fmame, lname, salary
FROM employees
where salary
< (SELECT AVG(salary)
FROM employees);

SELECT * FROM (SELECT emp_id, f_name,
l_name, dep_id FROM employees) AS emp4all;

SELECT * FROM employees WHERE job_id IN
(SELECT job_ident FROM jobs);

Implicit Inner Join
SELECT column_name(s) FROM table1, table2
WHERE table1.column_name =
table2.column_name;

Implicit Inner Join combines two or more
records but displays only matching values in
both tables. Inner join applies only the
specified columns.

SELECT * FROM employees, jobs where
employees.job_id = jobs.job_ident;

Implicit Cross Join SELECT column_name(s) FROM table1, table2;

Implicit Cross Join is defined as a Cartesian
product where the number of rows in the first
table is multiplied by the number of rows in
the second table.

SELECT * FROM employees, jobs;

Author(s)

Lakshmi Holla
Abhishek Gagneja

Changelog

https://www.linkedin.com/in/lakshmi-holla-b39062149/
https://www.coursera.org/instructor/~129186572

Date Version Changed by Change Description
2023-10-03 1.3 Steve Hord QA pass with edits
2023-10-01 1.2 Abhishek Gagneja Updated the document
2023-05-04 1.1 Benny Li Formatting changes
2021-07-28 1.0 Lakshmi Holla Initial Version

