
SQL Cheat Sheet: Accessing Databases using Python

SQLite

Topic Syntax Description Example

connect() sqlite3.connect()

Create a new database and
open a database
connection to allow
sqlite3 to work with it.
Call sqlite3.connect()
to create a connection to
the database
INSTRUCTOR.db in the
current working directory,
implicitly creating it if it
does not exist.

1. 1
2. 2

1. import sqlite3
2. con = sqlite3.connect("INSTRUCTOR.db")

Copied!

cursor() con.cursor()

To execute SQL
statements and fetch
results from SQL queries,
use a database cursor. Call
con.cursor() to create the
Cursor.

1. 1

1. cursor_obj = con.cursor()

Copied!

execute() cursor_obj.execute()

The execute method in
Python's SQLite library
allows to perform SQL
commands, including
retrieving data from a
table using a query like
"Select * from
table_name." When you
execute this command, the
result is obtained as a
collection of table data
stored in an object,
typically in the form of a
list of lists.

1. 1

1. cursor_obj.execute('''insert into INSTRUCTOR values (1, 'Rav', 'Ahuja', 'TO

Copied!

fetchall() cursor_obj.fetchall()

The fetchall() method
in Python retrieves all the
rows from the result set of
a query and presents them
as a list of tuples.

1. 1
2. 2
3. 3
4. 4
5. 5

1. statement = '''SELECT * FROM INSTRUCTOR'''
2. cursor_obj.execute(statement)
3. output_all = cursor_obj.fetchall()
4. for row_all in output_all:
5. print(row_all)

Copied!

fetchmany() cursor_obj.fetchmany()

The fetchmany() method
retrieves the subsequent
group of rows from the
result set of a query rather
than just a single row. To
fetch a few rows from the
table, use
fetchmany(numberofrows)
and mention how many
rows you want to fetch.

1. 1
2. 2
3. 3
4. 4
5. 5

1. statement = '''SELECT * FROM INSTRUCTOR'''
2. cursor_obj.execute(statement)
3. output_many = cursor_obj.fetchmany(2)
4. for row_many in output_many:
5. print(row_many)

Copied!

read_sql_query() read_sql_query()

read_sql_query() is a
function provided by the
Pandas library in Python,
and it is not specific to
MySQL. It is a generic
function used for
executing SQL queries on
various database systems,
including MySQL, and
retrieving the results as a
Pandas DataFrame.

1. 1

1. df = pd.read_sql_query("select * from instructor;", conn)

Copied!

shape dataframe.shape

It provides a tuple
indicating the shape of a
DataFrame or Series,
represented as (number of
rows, number of
columns).

1. 1

1. df.shape

Copied!

close() con.close() con.close() is a method
used to close the
connection to a MySQL
database. When called, it
terminates the connection,
releasing any associated
resources and ensuring the
connection is no longer
active. This is important

1. 1

1. con.close()

Copied!

for managing database
connections efficiently
and preventing resource
leaks in your MySQL
database interactions.

CREATE
TABLE

CREATE TABLE table_name (
column1 datatype
constraints, column2
datatype constraints, ...);

The CREATE TABLE
statement is used to define
and create a new table
within a database. It
specifies the table's name,
the structure of its
columns (including data
types and constraints), and
any additional properties
such as indexes. This
statement essentially sets
up the blueprint for
organizing and storing
data in a structured format
within the database.

1. 1
2. 2
3. 3
4. 4
5. 5
6. 6

1. CREATE TABLE INTERNATIONAL_STUDENT_TEST_SCORES (

2. country VARCHAR(50),

3. first_name VARCHAR(50),

4. last_name VARCHAR(50),

5. test_score INT
6.);

Copied!

barplot()
seaborn.barplot(x="x-
axis_variable", y="y-
axis_variable", data=data)

seaborn.barplot() is a
function in the Seaborn
Python data visualization
library used to create a bar
plot, also known as a bar
chart. It is particularly
used to display the
relationship between a
categorical variable and a
numeric variable by
showing the average value
for each category.

1. 1
2. 2

1. import seaborn
2. seaborn.barplot(x='Test_Score',y='Frequency', data=dataframe)

Copied!

read_csv() df =
pd.read_csv('file_path.csv')

read_csv() is a function
in Python's Pandas library
used for reading data from
a Comma-Separated
Values (CSV) file and
loading it into a Pandas
DataFrame. It's a common
method for working with
tabular data stored in CSV
format

1. 1
2. 2

1. import pandas
2. df = pandas.read_csv('https://data.cityofchicago.org/resource/jcxq-k9xf.csv

Copied!

to_sql() df.to_sql('table_name',
index=False)

df.to_sql() is a method
in Pandas, a Python data
manipulation library used
to write the contents of a
DataFrame to a SQL
database. It allows to take
data from a DataFrame
and store it structurally
within a SQL database
table.

1. 1
2. 2
3. 3

1. import pandas
2. df = pandas.read_csv('https://data.cityofchicago.org/resource/jcxq-k9xf.csv
3. df.to_sql("chicago_socioeconomic_data", con, if_exists='replace', index=Fal

Copied!

read_sql() df = pd.read_sql(sql_query,
conn)

read_sql() is a function
provided by the Pandas
library in Python for
executing SQL queries
and retrieving the results
into a DataFrame from an
SQL database. It's a
convenient way to
integrate SQL database
interactions into your data
analysis workflows.

1. 1
2. 2

1. selectQuery = "select * from INSTRUCTOR"
2. df = pandas.read_sql(selectQuery, conn)

Copied!

Db2

Topic Syntax Description Example

connect()
conn =
ibm_db.connect('DATABASE=dbname;
HOST=hostname;PORT=port;UID=username;
PWD=password;', '', '')

ibm_db.connect() is a
Python function provided
by the ibm_db library,
which is used for
establishing a connection
to an IBM Db2 or IBM
Db2 Warehouse database.
It's commonly used in
applications that need to
interact with IBM Db2
databases from Python.

1. 1
2. 2
3. 3
4. 4

1. import ibm_db
2. conn = ibm_db.connect('DATABASE=mydb;
3. HOST=example.com;PORT=50000;UID=myuser;
4. PWD=mypassword;', '', '')

Copied!

server_info() ibm_db.server_info() ibm_db.server_info(conn)
is a Python function
provided by the ibm_db
library, which is used to
retrieve information about
the IBM Db2 server to
which you are connected.

1. 1
2. 2
3. 3
4. 4

1. server = ibm_db.server_info(conn)
2. print ("DBMS_NAME: ", server.DBMS_NAME)
3. print ("DBMS_VER: ", server.DBMS_VER)

4. print ("DB_NAME: ", server.DB_NAME)

Copied!

close() con.close()

con.close() is a method
used to close the
connection to a db2
database. When called, it
terminates the connection,
releasing any associated
resources and ensuring the
connection is no longer
active. This is important
for managing database
connections efficiently
and preventing resource
leaks in your db2 database
interactions.

1. 1

1. con.close()

Copied!

exec_immediate()

sql_statement = "SQL statement goes
here"
stmt = ibm_db.exec_immediate(conn,
sql_statement)

ibm_db.exec_immediate()
is a Python function
provided by the ibm_db
library, which is used to
execute an SQL statement
immediately without the
need to prepare or bind it.
It's commonly used for
executing SQL statements
that don't require input
parameters or don't need
to be prepared in advance.

1. 1
2. 2
3. 3

1. # Lets first drop the table INSTRUCTOR in case it exists from a p
2. dropQuery = "drop table INSTRUCTOR"
3. dropStmt = ibm_db.exec_immediate(conn, dropQuery)

Copied!

Author(s)

Abhishek Gagneja

D.M Naidu

Changelog

Date Version Changed by Change Description
2023-10-30 1.2 Mary Stenberg QA Pass with edits
2023-10-16 1.1 Abhishek Gagneja Updated instruction set
2023-05-08 1.0 D.M.Naidu Initial Version

https://www.coursera.org/instructor/~129186572
https://www.linkedin.com/in/mrutyunjaya-naidu-duvvana-4980a3144/

