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Abstract

In group testing, the goal is to identify a subset of defective items within a larger set of items
based on tests whose outcomes indicate whether any defective item is present. This problem is
relevant in areas such as medical testing, data science, communications, and many more. Mo-
tivated by physical considerations, we consider a sparsity-based constrained setting (Gandikota
et al., 2019) where the testing procedure is subject to one of the following two constraints: items
are finitely divisible and thus may participate in at most γ tests; or tests are size-constrained
to pool no more than ρ items per test.

While-information theoretic limits and algorithms are known for the non-adaptive setting,
relatively little is known in the adaptive setting. We address this gap by providing an informa-
tion theoretic converse that holds even in the adaptive setting, as well as a near-optimal noiseless
adaptive algorithm for γ-divisible items. In broad scaling regimes, our upper and lower bounds
asymptotically match up to a factor of e. We also present an adaptive algorithm for ρ-sized
tests.

Under the non-adaptive setting, we generalize both constraints into a general constraint
and provide information theoretic converse for both constraints. For the γ-divisible items con-
straints, we use the Definite Defectives (DD) decoding algorithm and study bounds on the
required number of tests for vanishing error probability under the near-constant random test
per item designs. We show that the number of tests required is less than the Combinatorial
orthogonal matching pursuit (COMP) decoding algorithm, and is even order optimal for some
scaling regimes.
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Chapter 1

Introduction

Group testing originated in the United States in 1943, where a large number of conscripted

soldiers were required to be screened for syphilis. Due to the existence of an accurate test (the

Wassermann test), a naive option would be to test each soldier’s blood sample individually.

However, syphilis being a rare disease will result in most of the tests being negative. Since most

tests have a high probability of being negative, under an information theoretic viewpoint, the

tests are not very informative.

Our goal is to reduce the number of tests required to identify the soldiers with syphilis, using

only the list of tests and their corresponding outcomes. Robert Dorfman [11] discovered that

the number of tests required can be dramatically reduced by pooling samples. In other words,

we can take blood samples from a “pool” of many soldiers, mix the samples, and perform the

syphilis test on the pooled sample. We assume that the test is reliable which means that if

the outcome is positive, it indicates that there is at least one soldier from the “pool” that has

syphilis. If the outcome is negative, no soldier from the “pool” has syphilis. This led to the

birth of group testing, which can be thought of as a discrete sparse inference problem.

Our idealized model where tests are reliable is known as the standard noiseless group test-

ing. Generally, we have n items (number of soldiers) of which d are defective (number that

has syphilis). The central problem of group testing is as follows: Given the number of items

n and the number of defectives d, how many tests T are required to accurately discover the

defective items, and how can this be achieved? The answer to this central problem depends on
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the assumptions on the mathematical model used. Below are some important distinctions [3]

in the assumptions:

Adaptive vs. non-adaptive: Under adaptive testing, the test pools are designed sequentially,

and each one can depend on the previous test outcomes. Under non-adaptive testing, the test

pools are designed in advance before the testing process. This makes parallel implementation

of the tests more viable.

Zero error probability vs. small error probability: Under the zero error probability cri-

terion, we want to be certain that we will accurately recover the defective set. Under the small

error probability criterion, we want to accurately recover the defective set with high probability.

Exact recovery vs. partial recovery: Under the exact recovery criterion, we require that

every defective item is correctly classified as defective, and every non-defective item is correctly

classified as non-defective. Under the partial recovery criterion, we are more lenient and allow

a small number of incorrectly classified items.

Noiseless vs. noisy testing: Under noiseless testing, we are guaranteed that the test pro-

cedure works perfectly: We get a negative test outcome if all items in the testing pool are

non-defective, and a positive outcome if at least one item in the pool is defective. This is

equivalent to the reliable assumption made earlier in the syphilis example. Under noisy testing,

errors can occur, either according to some specified random model or in an adversarial manner.

Binary vs. non-binary outcomes: Under binary outcomes, tests are either positive or nega-

tive. Under the non-binary outcomes, there might be a wider range of outcomes. For example,

based on the number of defective and non-defective items, we can have different degrees of

positivity (weak to strong) .

Throughout this report, our focus will be on small error probability, exact recovery, noiseless

testing, and binary outcomes. We will study both the adaptive and non-adaptive settings. There

are also further distinctions regarding the assumed distribution of the defective items among

all items, and the decoder’s knowledge (or lack of knowledge). These are explained below.

Combinatorial vs. i.i.d. prior: Under the combinatorial prior, there is a fixed number of

defectives, and the defective set is uniformly random among all sets of this size. Under the i.i.d.
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prior, each item is defective independently with the same fixed probability.

Known vs. unknown number of defectives: This distinguishes algorithms that need to be

given the true number of defectives (or require estimation of the number of defectives first), and

those that do not.

1.1 Model Setup

We will now introduce the model mathematically. Let n be the number of items, which we label

as {1, 2, . . . , n}. Let D ⊂ {1, 2, . . . , n} be the set of defective items, and d = |D| be the number

of defective items. We write ui = 1 to denote that item i ∈ D is defective, and ui = 0 to denote

that i /∈ D is non-defective. In other words, ui is the indicator function ui = 1{i ∈ D}. We

then write u = (ui) ∈ {0, 1}n for the defectivity vector.

In this report, we consider only the case where n is large, and d comparatively is small.

Hence, we are interested in the sparse regime d ∈ o(n). Also let T = T (n) be the number of

tests performed and label the tests {1, 2, . . . , T}. To keep track of the design of the test pools

in the non-adaptive setting, we write xti = 1 to denote that item i ∈ {1, 2, . . . , n} is in the pool

for test t ∈ {1, 2, . . . , T}, and xti = 0 to denote that item i is not in the pool for test t. This

can be represented by the matrix X ∈ {0, 1}T×n, known as the testing matrix or test design. A

visual representation of an example is shown in Figure 1.1 (top) where xti = 1 is represented

by a shaded box, and xti = 0 is represented by a white box.

It is useful to think of group testing as a channel coding framework, where the particular

defective set D acts like the source message, finding the defective set can be thought of as

decoding, and the matrix X acts like the codebook. This is shown in Figure 1.1 (bottom). Due

to the previous success of randomized codes in channel communication [21] (e.g. turbo codes

and LDPC codes), it is natural to consider randomized matrix designs. We use a capital Xti to

denote the random entries of a random testing matrix. In this report, we are interested in the

following design:

Near-constant tests-per-item design: In this design, each item is included in some fixed

number L of tests. The L tests for each item are chosen uniformly at random with replacement.
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Figure 1.1: Group testing interpreted as a channel coding problem. The notation XD denotes

the T ×d sub-matrix of X obtained by keeping only the d columns indexed by D, and the output

y is the ‘OR’ of these d columns.

More specifically, L entries of each column are selected uniformly at random with replacement

and set to one. The remaining entries are set to zero. Since we are selecting with replacement,

some item(s) may be in fewer than L tests, hence the terminology “near-constant”. This is a

mathematical convenience that makes the analysis more tractable.

Now let yt ∈ {0, 1} be the outcome of the test t ∈ {1, 2, . . . , T}, where yt = 1 denotes a

positive outcome and yt = 0 a negative outcome. Hence, we have y = (yt) ∈ {0, 1}T for the

vector of test outcomes. Using the OR (or disjunction) operator
∨

, we have

yt =
∨
i∈D

xti, (1.1)

and using the definition of ui above, we have

yt =
∨
i

xtiui, (1.2)

A decoding (or detection) algorithm is a (possibly randomized) function D̂ : {0, 1}T×n ×

{0, 1}T → P({1, 2, . . . , n}), where the power-set P({1, 2, . . . , n}) is the collection of the sub-

sets of items. Given the tests and their outcomes, the decoding algorithm outputs an estimate

vector û ∈ {0, 1}n, representing an estimate of the defectivity vector of the population.
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1.2 Applications

In this section, we provide some applications of group testing. In recent times, group testing

has been abstracted into a combinatorial and algorithmic problem. This has led to many uses

in other domains. Some examples are as follows:

Biology: In DNA testing (as described in [24]), modern sequencing methods search for par-

ticular subsequences of the genome in relatively short fragments of DNA. This results in the

samples from individuals to be easily mixed. Hence, we can apply group testing to reduce the

number of tests to isolate individuals (treated as defectives) with rare genetic conditions.

Furthermore, group testing can used to count defective items. Here, instead of identifying

the defective set, we just want to estimate the number of defective items. This proves to be

useful in situations where there is no need to distinguish the defective items (e.g., insects in

[26]) and when there is an intention to protect the privacy of the defective items (e.g., patients

with HIV/AIDS in [14]).

Communications: In multiple access channel [28], which is a channel where many users

can communicate with a single receiver, at any one time, a small subset of users (treated as

defectives) will have messages to transmit. Group testing can be applied to identify those users.

In cognitive radio networks, where “secondary users” can opportunistically transmit on

frequency bands which are unoccupied by primary users, unoccupied bands are treated as

defectives. We scan combinations of several bands at the same time (equivalent to pooling) and

detect if any signal is being transmitted across any of them.

Information technology: In cybersecurity, there is an important problem known as the file

comparison problem. The goal is to efficiently determine which computer files have changed

based on a collection of various combinations of files. Here we treat the modified files as

defectives and the combine hash acting as a testing pool. Non-adaptive group testing is then

used to solve the problem, as described in [19].

Data science: Group testing is used in a variety of sparse inference problems, including

streaming algorithms and learning sparse linear functions [15]. Group testing is also used in

classical problems in computer science, including estimation of high degree vertices in hidden
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bipartite graphs [27] and pattern matching [17].

1.3 Constraints

Our focus in this report will be on sparse group testing introduced in [13] where the testing

procedure is subjected to one of two constraints:

1. Items are finitely divisible and thus may participate in at most γ tests.

2. Tests are size-constrained and thus contain no more than ρ items per test.

Referring to our syphilis example in the introduction section, the γ-divisible items constraint

can arise in the situation where there are limitations on the volume of blood provided by each

soldier for the tests limiting the number of tests that each soldier can participate in. The ρ-sized

tests constraint can arise in the situation where there are limitations on the number of blood

samples that the machine can accept.

1.4 Previous Work on Sparse Group Testing

In the standard group-testing setting, in the absence of testing constraints, T > (1−ε)(d log(nd ))

tests are necessary to identify all defectives with error probability at most ε [2, 6]. Hence, the

same is certainly true in the constrained setting. The same goes for the strong converse, which

improves the preceding bound to T > (1 − o(1))(d log(nd )) for any fixed ε ∈ (0, 1) [5, 18]. A

matching upper bound is known for all d = o(n) in the unconstrained adaptive setting [16],

whereas matching this lower bound non-adaptively is only possible non-adaptively in certain

sparser regimes [7, 23].

It is well-known that if each test comprises of Θ(nd ) items, then Θ(d log n) tests suffice for

group-testing algorithms with vanishing error probability [2, 6]. Hence, the parameter regime

of primary interest in the size-constrained setting is ρ ∈ o(nd ). By a similar argument, the

parameter regime of primary interest in the finitely divisible setting is γ ∈ o(log(nd )). Combined
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with the condition T ∈ Ω(d log(nd )), the latter scaling regime implies that

T

γd
→∞ (1.3)

as n→∞, which will be useful in our proofs.

For the non-adaptive setting, Gandikota et al. [13] proved the following results for the

γ-divisible setting.

Theorem 1.4.1. [13] For any sufficiently large n, sufficiently small ε > 0, γ ∈ o(log n), and

d ∈ Θ(nθ) for some positive constant θ ∈ [0, 1), there exists a randomized design testing each

item at most γ times that uses at most
⌈
eγd(nε )1/γ

⌉
tests and ensures a reconstruction error of

at most ε.

Theorem 1.4.2. [13] For any sufficiently large n, sufficiently small ε > 0, γ ∈ o(log n), and

d ∈ Θ(nθ) for some positive constant θ ∈ [0, 1), any non-adaptive group testing algorithm that

tests each item at most γ times and has a probability of error of at most ε requires at least

γd(nd )(1−5ε)/γ tests.

For ρ-sized tests, the following achievability and converse results were also proved in [13].

Theorem 1.4.3. [13] For any sufficiently large n, sufficiently small ζ > 0, ρ ∈ Θ
(
(nd )β

)
(for

some constant β ∈ [0, 1)), and d ∈ Θ(nθ) for some positive constant θ ∈ [0, 1), there exists a

randomized non-adaptive group testing design that includes at most ρ items per test, using at

most
⌈ 1+ζ

(1−α)(1−β)

⌉⌈
n
ρ

⌉
tests and ensuring a reconstruction error of at most ε = n−ζ .

Theorem 1.4.4. [13] For any sufficiently large n, sufficiently small ε > 0, ρ ∈ Θ
(
(nd )β

)
(for

some constant β ∈ [0, 1)), and d ∈ Θ(nθ) for some positive constant θ ∈ [0, 1), any non-adaptive

group testing algorithm that includes ρ items per test and has a probability of error of at most

ε requires at least
(

1−6ε
1−β

)
n
ρ tests.

We observe that under the ρ-sized test constraint, both the lower and upper bounds have

the same leading order term n
ρ . Hence, there is not much of a gap between the lower and upper

bounds. However, under the γ-divisible items constraint, the lower bound contains the term

(nd )(1−5ε)/γ while the upper bound contains the term (nε )1/γ . Hence, there is significant gap
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between the lower and upper bounds; we will see that the gap can be made much smaller in the

adaptive setting.

1.5 Overview of the Report

The structure of the report, as well as the main contributions, are outlined as follows:

• In Chapter 2, we consider the sparse adaptive setting and present an information theoretic

lower bound for γ-divisible items, which strengthens the previous information theoretic

lower bound in [13] for γ-divisible items by improving its dependence on error probability,

as well as, extending its validity to the adaptive setting. Furthermore, we present adaptive

algorithms for both γ-divisible items and ρ-sized tests and show that both algorithms

recover the defective set with zero error probability. Moreover, we show that the algorithm

for γ-divisible items is nearly optimal.

• In Chapter 3, we consider the sparse non-adaptive setting. By generalizing the γ-divisible

items constraint and the ρ-sized tests constraint into a general constraint, we obtain

information theoretic lower bounds for both settings which are consistent with previous

information theoretic lower bounds in [13]. Furthermore, we extend an existing decoding

algorithm to γ-divisible items and show that it performs better than a previously analyzed

algorithm in [13].

• In Chapter 4, we review the main contributions of the report, and present various direc-

tions for future research.

1.6 Notation

Throughout the rest of the report, we will stay consistent with the notations introduced in

Section 1.1.

We use bold symbols for vectors (e.g. x), and we denote the corresponding i-th entry using

a subscript (e.g. xi). The natural logarithm is denoted by log(·). We use the symbol ∼ to

denote asymptotic equivalence.
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We use standard notations in information theory where H(X) denotes entropy, H2(X)

denotes binary entropy, H(Y |X) denotes conditional entropy and I(X|Y ) denotes mutual in-

formation.

We use standard notations in statistics and probability, where the symbol ∼ means “dis-

tributed as” (but sometimes also represents asymptotic equivalence; this will be clear from the

context), P[·] denotes the probability of an event, the hat symbol (e.g., x̂) represents an esti-

mator or an estimate, EP [·] denotes the expectation with respect to distribution P . When the

probability distribution is understood from the context, we simply write E[·]. Also, we denote

the indicator function of an event by 1{·}. The ceiling function is denoted by d·e.

To improve readability, we use Bachmann-Landau asymptotic notation (i.e., O, o, Ω, ω, Θ)

to specify parameter regimes. Any other notations required for specific proofs will be introduced

when necessary.
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Chapter 2

Sparse Adaptive Group Testing

2.1 Introduction

In this chapter, we seek information theoretic bounds and algorithms for the sparse adaptive

setting.

Throughout the chapter, we consider the setup described in Section 1.1 and Section 1.3.

More specifically, we consider the sparse adaptive group testing problem with small error prob-

ability, exact recovery, noiseless tests, binary outcomes, and combinatorial prior. Concretely,

we target the error probability being bounded by some ε > 0:

Pe = P[û 6= u] ≤ ε, (2.1)

where the probability is taken over the randomness of the set of defective items. Our main

contributions are as follows:

• In Section 2.2, we provide information theoretic lower bound for γ-divisible items under

the sparse adaptive setting.

• In Section 2.3, we provide an algorithm for γ-divisible items and study the number of

tests for reliable recovery with zero error probability.

• In Section 2.4, we provide an algorithm for ρ-divisible tests and study the number of tests

for reliable recovery with zero error probability.
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Our analysis will make use of several techniques and results from probability theory and infor-

mation theory.

Parts of this chapter were presented in [25].

2.2 Information Theoretic Lower Bound for γ-divisible Items

In this section, we present our information theoretic lower bounds for sparse group testing under

the γ-divisible items. We first prove a counting bound which gives us an upper bound on the

success probability P(suc) = 1 − Pe, following similar proof techniques as [5], with suitable

refinements to account for the γ-divisibility constraint. Afterwards, we will use the bound on

P(suc) to prove the converse result (lower bound on T ).

Theorem 2.2.1. Consider the case of n items with d defectives where each item can be tested

at most γ times. Any algorithm (possibly adaptive) to recover the defective set D with T tests

has success probability P(suc) satisfying

P(suc) ≤
∑γd

i=0

(
T
i

)(
n
d

) . (2.2)

Proof. See Section 2.5.1.

We now use the result in (2.2) to prove the following converse.

Theorem 2.2.2. Fix ε ∈ (0, 1), and suppose that d ∈ o(n), γ ∈ o(log n), and γd → ∞ as

n → ∞. Then any non-adaptive or adaptive group testing algorithm that tests each item at

most γ times and has a probability of error of at most ε requires at least e−(1+o(1))γd
(
n
d

)1/γ
tests.

Proof. See Section 2.5.2.

Since ε only affects the eo(1) term, asymptotically, the number of tests required remains

unchanged for any nonzero target success probability. This is in analogy with the strong converse

results of [5, 18].

Theorem 2.2.2 strengthens the previous information theoretic lower bound in [13] for γ-

divisible items (stating that T ≥ γd(nd )(1−5ε)/γ) by improving the dependence on ε, as well as
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Algorithm 1 Adaptive algorithm for γ-divisible items

Require: Number of items n, number of defective items d, and divisibility of each item γ

1: Initialize M ← (nd )
γ−1
γ and defective set D ← ∅

2: Arbitrarily group the n items into n
M groups of size M

3: Test each group and discard any that return a negative outcome

4: Label the remaining groups incrementally as G
(0)
j , where j = 1, 2, . . .

5: for i = 1 to γ − 1 do

6: for each group G
(i−1)
j from the previous stage do

7: Arbitrarily group all items in G
(i−1)
j into M1/(γ−1) sub-groups of size M1−i/(γ−1)

8: Test each sub-group and discard any that return a negative outcome

9: Label the remaining sub-groups incrementally as G
(i)
j

10: end for

11: end for

12: Add the items in all the remaining groups G
(γ−1)
j to D

13: return D

extending its validity to the adaptive setting (whereas [13] used an approach based on Fano’s

inequality that is specific to the non-adaptive setting).

2.3 Algorithm for γ-divisible Items

We first consider the recovery of the defective set given knowledge of the size d of the defective

set. Afterwards, we consider the estimation of d.

2.3.1 Recovering the Defective Set

Our algorithm for the case that d is known is described in Algorithm 1, where we assume for

simplicity that (nd )1/γ is an integer.1 Using Algorithm 1, we have the following theorem, which

is proved throughout the remainder of the subsection.

1Note that we assume d ∈ o(n) and γ ∈ o(log(n
d

)), meaning that (n
d

)1/γ → ∞. Hence, the effect of rounding

is asymptotically negligible, and is accounted for by the 1 + o(1) term in the theorem statement.
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Theorem 2.3.1. For γ ∈ o(log n), and d ∈ o(n), there exists an adaptive group testing al-

gorithm that tests each item at most γ times that uses at most γd(nd )1/γ tests to recover the

defective set exactly with zero error probability given knowledge of d.

Proof. See Section 2.5.3.

Comparisons: Referring to Theorem 1.4.1, the upper bound for the non-adaptive algorithm

of [13] using a randomized test matrix design is T ≤
⌈
eγd(nε )1/γ

⌉
. The non-adaptive algorithm

has a (nε )1/γ term in the upper bound, while our adaptive algorithm has a (nd )1/γ term. Since

ε is small but d is large, we see that our adaptive algorithm gives a significantly improved

bound on the number of tests. Furthermore, the upper bound of our algorithm matches the

information-theoretic lower bound in Theorem 2.2.2 up to a constant factor of e1+o(1). This

proves that our algorithm is nearly optimal.

2.3.2 Estimating the Number of Defectives

Since each item can appear in at most γ tests, existing adaptive algorithms for estimating d

that place items in Ω(log log d) tests [9, 12] are not suitable when γ � log log d, and may be

wasteful of the budget γ even when γ � log log d.

To overcome this limitation, we introduce and evaluate two approaches to obtain a suitable

input for d in Algorithm 1 given knowledge of an upper bound dmax ≥ d. The first approach uses

dmax directly in Algorithm 1, while the second approach refines dmax by deriving an estimate

d̂ that is passed to Algorithm 1. Note that we need d̂ to be an overestimate for the proof of

Theorem 2.3.1 to still apply (with d̂ in place of d).

Using an dmax directly

Assuming that ( n
dmax

)1/γ is an integer, we first consider using dmax directly in Algorithm 1 (in

place of d) to recover the defective set D.

Analysis: Referring to Algorithm 1, this changes our initialization of M which becomes

13



Algorithm 2 Estimation of d

Require: Population of items, number of items n, upper bound dmax ≥ d, and a probability

parameter βn

1: Initialize number of bins B ← dmax/βn

2: Partition the items into B bins of size n/B each, uniformly at random

3: Test each bin and discard any with a negative test outcome

4: d̂← #positive bins/(1−
√
βn)

5: return d̂

( n
dmax

)(γ−1)/γ . Substituting the updated value of M into (2.34), we obtain the following:

T ≤ n

( n
dmax

)(γ−1)/γ
+ (γ − 1)d

[( n

dmax

) γ−1
γ
] 1
γ−1

, (2.3)

which simplifies to

T ≤ (dmax − d+ γd)
( n

dmax

) 1
γ
. (2.4)

Binning Method

We will show that the bound on T can be improved by forming a refined estimate of d

using knowledge of dmax, at the expense of having a non-zero (but asymptotically vanishing)

probability of error.

Let βn be a given parameter, which we will assume tends to zero as n → ∞. We first run

Algorithm 2 to obtain a new input d̂ to Algorithm 1. We then run Algorithm 1 with modified

inputs (described in the following) to recover the defective set D. Assuming that (n
d̂
)1/γ is an

integer, we set the population of items in Algorithm 1 to be the remaining items left in the

positive bins, the number of items as d×(bin size) = d( βnndmax
), the (upper bound on the) number

of defective items as d̂, and the divisibility of each item as γ − 1 (since each item is tested once

in Algorithm 2).

Analysis: We first show that the probability of a particular defective item colliding with

any other defective item (i.e., falling in the same bin) tends to zero as n → ∞. Referring

to step 2 in Algorithm 2, conditioning on a particular item being in a particular bin, we see

14



that the probability of another particular item being in the same bin is at most 1/B. By the

union bound, the probability of a particular defective item colliding with any of the other d− 1

defective items is at most d/B, which behaves as

d

B
=

d

dmax/βn
≤ d

d/βn
= βn → 0, . (2.5)

Secondly, we show that with high probability as n→∞, d̂ overestimates d. From (2.5), we

have

E[#collisions] ≤ dβn, (2.6)

where #collisions refer to the number of items that are in the same bin as any of the other d−1

items. By Markov’s inequality, we have

P[#collisions ≥ d
√
βn] ≤

√
βn, (2.7)

which implies the following:

P[d−#collisions ≥ d− d
√
βn] ≥ 1−

√
βn (2.8)

=⇒ P
[d−#collisions

1−
√
βn

≥ d
]
≥ 1−

√
βn. (2.9)

Since (#positive bins ≥ d−#collisions) always hold, we have P[d̂ ≥ d] ≥ 1−
√
βn, which tends

to 1 because βn → 0.

Finally, we derive the new upper bound for T . After estimating d, we have used B = dmax/βn

number of tests and have a remaining budget of γ − 1 per item. We discard the bins (groups)

that returned a negative outcome; instead of continuing with n items, we continue with less

than or equal to (d × bin size) items. To simplify notation, our updated inputs (labeled with

subscript “new”) are

nnew =
βndn

dmax
, dnew = d̂, γnew = γ − 1. (2.10)

We can then run Algorithm 1 to recover the defective set. Substituting our updated inputs into

(2.34) and using M =
( βndn
dmaxd̂

) γ−2
γ−1 , we have the following bound for T :

T ≤ dmax

βn
+

βndn

dmax( βndn
dmaxd̂

)
γ−2
γ−1

+ (γ − 2)d
( βndn
dmaxd̂

) 1
γ−1

, (2.11)
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which simplifies to

T ≤ dmax

βn
+ (d̂− 2d+ γd)

( βndn
dmaxd̂

) 1
γ−1

(2.12)

(a)

≤ dmax

βn
+
( d

1−
√
βn
− 2d+ γd

)( βnn
dmax

) 1
γ−1

, (2.13)

where we used d ≤ d̂ ≤ d
1−
√
βn

in (a).

Comparisons: By using T within the derived upper bounds, the first approach recovers the

defective set with zero error probability while the second approach recovers the defective set

with a small error probability determined by the βn parameter. Referring to (2.4) and (2.13),

we consider two examples to compare the bounds on T . The first example is when dmax = d,

and the second example is when γd� dmax � n.

For dmax = d, as we would naturally expect, (2.4) is the better bound; its leading term is

γd
(
n
d

)1/γ
. In particular, we note the following two cases: (i) If βn � 1

γ(n
d

)1/γ
, then the dmax

βn
term

in (2.13) is strictly higher than γd
(
n
d

)1/γ
; (ii) If βn � 1

γ(n
d

)1/γ
, then some simple algebra gives

βnn
d �

1
γ

(
n
d

)(γ−1)/γ
, which implies that the γd

(βnn
d

)1/(γ−1)
term from (2.13) is strictly higher

than γd
(
n
d

)1/γ
(note that

(
1
γ

)1/(γ−1)
= Θ(1)).

For γd� dmax � n, the choice of βn can impact which bound is smaller. First note that the

dominating term in (2.4) is dmax

(
n

dmax

)1/γ
. Since the dominating term max

{
dmax
βn

, γd
( βnn
dmax

)1/(γ−1)}
in (2.13) is not obvious, we consider both possibilities: (i) dmax

(
n

dmax

)1/γ � dmax
βn

whenever

βn �
(
dmax
n

)1/γ
; and (ii) dmax

(
n

dmax

)1/γ � γd
( βnn
dmax

) 1
γ−1 whenever βn �

(
dmax
γd

)γ−1(dmax
n

)1/γ
.

Combining these cases, we see that if βn is in the range
(
dmax
n

)1/γ � βn �
(
dmax
γd

)γ−1(dmax
n

)1/γ
,

the dominating term in (2.4) is greater than the dominating term in (2.13).

Since we have assumed βn to be decaying, we briefly discuss conditions under which the

requirement
(
dmax
n

)1/γ � βn is consistent with this assumption. While this lower bound on βn

may not always vanish as n→∞, it does so in broad scaling regimes, including the following:

γ ∈ Θ((log n)c) for some c ∈ [0, 1), and dmax = d = Θ(nθ) for some θ ∈ (0, 1). To see this, note

that

lim
n→∞

log
(dmax

n

) 1
γ

= lim
n→∞

(α− 1)(log n)1−c = −∞, (2.14)

and that taking exp(·) on both sides gives the desired result.
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Algorithm 3 Adaptive algorithm for ρ-sized tests

Require: Population of items, number of items n, number of defective items d, and test size

restriction ρ

1: Initialize defective set D ← ∅

2: Randomly group n items into n/ρ groups of size ρ

3: for each group Gi where i ∈ {1, 2, . . . , n/ρ} do

4: while testing Gi returns a positive outcome do

5: run Algorithm 4 on Gi and add its one defective item output d∗ into D

6: Gi ← Gi \ {d∗}

7: end while

8: end for

9: return D

Algorithm 4 Binary splitting

Require: a group of items Gi

1: If Gi consists of a single item, return that item.

2: Pick half of the items in Gi and call this set G′i. Perform a single test on G′i.

3: If the test is positive, set Gi ← G′i. Else, set Gi ← Gi \G′i. Return to step 1.

4: return D

Hence, for βn in the appropriate range, when dmax is close to d, using the upper bound

directly in Algorithm 1 leads to a smaller T . On the other hand, when γd � dmax � n, using

the binning method before Algorithm 1 leads to a smaller T .

2.4 Algorithm for ρ-sized Tests

We state our algorithm as shown in Algorithm 3. Our adaptive algorithm under the ρ-sized

test constraint is a modification of Hwang’s generalized binary splitting algorithm [16] where

we divide the n items into n
ρ groups of size ρ, instead of d groups of size n

d as in the original

algorithm.

Analysis: Let di be the number of defective items in each of the initial nρ groups. Note that
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since ρ ∈ o(nd ) implies d ∈ o(nρ ), most groups will not have a defective item. In the binary

splitting stage of the algorithm, we can round the halves in either direction if they are not an

integer. Hence, for each of the initial n
ρ groups, we take at most dlog2 ρe adaptive tests to find

a defective item, or one test to confirm that there are no defective item. Therefore, for each of

the initial nρ groups, we need max{1, di log2 ρ+O(di)} tests to find di defective items. Summing

across all n
ρ groups, we need a total of T =

∑n/ρ
i=1 max{1, di log2 ρ + O(di)} tests. This has the

following upper bound:

T ≤ n

ρ
+ d log2 ρ+O(d) (2.15)

(a)
=
n

ρ
(1 + o(1)) + d log2 ρ, (2.16)

where (a) uses d ∈ o
(
n
ρ

)
. With the further condition ρ ∈ O

(
n

d log(n/d)

)
, we have n

ρ ∈ Ω
(
d log

(
n
d

))
and d log ρ ∈ o

(
d log

(
n
d

))
. Thus, we can further simplify to get

T ≤ n

ρ
(1 + o(1)). (2.17)

This upper bound is tight in the sense that attaining vanishing error probability trivially requires

a fraction 1− o(1) of the items to be tested at least once, which implies T ≥ n
ρ (1− o(1)) by the

ρ-sized test constraint.

2.5 Proofs

2.5.1 Proof of Theorem 2.2.1 (Counting Bound)

Given a population of n objects, we write Σn,d for the collection of subsets of size d from the

population. Furthermore, we write D for the true defective set.

We follow the steps of [5] as follows: The testing procedure defines a mapping θ : Σn,d →

{0, 1}T . Given a putative defective set S ∈ Σn,d, θ(S) is the vector of test outcomes, with

positive tests represented as 1s and negative tests represented as 0s. For each vector y ∈ {0, 1}T ,

we write Ay ⊆ Σn,d for the inverse image of y under θ,

Ay = θ−1(y) = {S ∈ Σn,d : θ(S) = y}. (2.18)
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The role of an algorithm that decodes the outcome of the tests is to mimic the effect of the

inverse image map θ−1. Given a test output y, the optimal decoding algorithm would use a

lookup table to find the inverse image Ay. If this inverse image Ay = {S} has size |Ay| = 1, we

can be certain that the defective set was S. In general, if |Ay| ≥ 1, we cannot do better than

pick uniformly among Ay, with success probability 1
|Ay| (We can ignore empty Ay, since we are

only concerned with vectors y that occur as a test output).

Hence, overall, the probability of recovering a defective set S is 1
|Aθ(S)|

, depending only on

θ(S). We can write the following expression for the success probability, conditioning over all

the equiprobable values of the defective set:

P(suc)
(a)
=

∑
S∈Σn,d

P(suc|D = S)
1(
n
d

) (2.19)

=
1(
n
d

) ∑
S∈Σn,d

∑
y∈{0,1}T

1(θ(S) = y)P(suc|D = S) (2.20)

=
1(
n
d

) ∑
S∈Σn,d

∑
y∈{0,1}T :|Ay|≥1

1(θ(S) = y)
1

|Ay|
(2.21)

=
1(
n
d

) ∑
y∈{0,1}T : |Ay|≥1

1

|Ay|

( ∑
S∈Σn,d

1(θ(S) = y)
)

(2.22)

=
1(
n
d

) ∑
y∈{0,1}T : |Ay|≥1

1

|Ay|
|Ay| (2.23)

=
|{y ∈ {0, 1}T : |Ay| ≥ 1}|(

n
d

) (2.24)

(b)

≤ |{y with ≤ γd ones}|(
n
d

) =

∑γd
i=0

(
T
i

)(
n
d

) , (2.25)

where (a) uses the law of total probability and the uniform prior on D, and (b) uses the fact

that at most γd test outcomes can be positive, even in the adaptive setting. This is because

adding another defective always introduces at most γ additional positive tests.

2.5.2 Proof of Theorem 2.2.2 (Converse for γ-divisible Items)

From the counting bound in (2), we upper bound the sum of binomial coefficients [4, Section 4.7.]

to obtain

P(suc) ≤ eTH2( γd
T

)(
n
d

) ≡ δ, (2.26)

19



where H2(·) is the binary entropy function in nats. From (2.26), we have eTH2( γd
T

)/
(
n
d

)
= δ,

which implies that

log

(
δ

(
n

d

))
= TH2

(γd
T

)
(2.27)

= γd log
T

γd
+ (T − γd) log

1

1− γd
T

(2.28)

(a)
= γd log

T

γd
+ γd(1 + o(1)), (2.29)

where (a) uses a Taylor expansion and the fact that γd
T ∈ o(1) from (1.3). Hence, we have

(1− γd
T )−1 = exp(γdT )(1 + o(1)) which is used to obtain the simplification. Rearranging (2.29),

we obtain

γd log
T

γd
= log

(
δ

(
n

d

))
− γd(1 + o(1)) (2.30)

=⇒ log
T

γd
=

1

γd
log

(
δ

(
n

d

))
− (1 + o(1)), (2.31)

which gives

T = e−(1+o(1))γd

(
δ

(
n

d

)) 1
γd

(2.32)

(a)

≥ e−(1+o(1))γdδ
1
γd

(n
d

) 1
γ
, (2.33)

where (a) follows from the fact that
(
n
d

)
≥
(
n
d

)d
.

The proof is completed by noting that for a fixed target success probability δ = 1 − ε,

δ1/(γd) → 1 as γd→∞.

2.5.3 Proof of Theorem 2.3.1 (Adaptive Algorithm Performance)

Similar to Hwang’s generalized binary splitting algorithm [16], the idea behind the parameter

M in Algorithm 1 is that when d becomes large, having large groups during the initial splitting

stage is wasteful, as it results in each test having a very high probability of being positive

(not very informative). Hence, we want to find the appropriate group sizes that result in more

informative tests to minimize the number of tests. Each stage (outermost for-loop in Algorithm

1) here refers to the process where all groups of the same sizes are split into smaller groups (as

seen in Figure 2.1). We letM be the group size at the initial splitting stage of the algorithm. The
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Figure 2.1: Visualization of splitting in the adaptive algorithm.

algorithm first tests n/M groups of size M each,2 then steadily decrease the sizes of each group

down the stages: M →M1−1/(γ−1) →M1−2/(γ−1) → · · · → 1 (see Figure 2.1 for visualization).

Hence, we have n/M groups in the initial splitting and M
1

γ−1 groups in all subsequent splits.

With the above observations, we can derive an upper bound on the total number of tests

needed. We have n/M tests in the first stage. Since we have d defectives and split into M
1

γ−1

sub-groups in subsequent stages, the number of smaller groups that each stage can produce is at

most dM
1

γ−1 . This implies that the number of tests conducted at each stage is at most dM
1

γ−1 .

This gives us the following bound on T :

T ≤ n

M
+ (γ − 1)dM

1
γ−1 . (2.34)

We optimize with respect to M by differentiating the upper bound and setting it to zero. This

gives us M = (nd )
γ−1
γ . Substituting M = (nd )

γ−1
γ into the general upper bound in (2.34), we

have the following upper bound:

T ≤ n

(nd )
γ−1
γ

+ (γ − 1)d

[(n
d

) γ−1
γ

] 1
γ−1

= γd
(n
d

) 1
γ
. (2.35)

2Note that n
M

is an integer for our chosen M below, which gives n
M

= d(n
d

)1/γ , and (n
d

)1/γ was assumed to

be an integer earlier.
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Chapter 3

Sparse Non-adaptive Group Testing

3.1 Introduction

In this chapter, we seek information theoretic bounds and algorithms for the sparse non-adaptive

setting.

Throughout the chapter, we consider the setup described in Section 1.1 and Section 1.3.

More specifically, we consider the sparse non-adaptive group testing problem with small error

probability, exact recovery, noiseless tests, binary outcomes, and combinatorial prior. Con-

cretely, we target the error probability being bounded by some ε > 0:

Pe = P[û 6= u] ≤ ε, (3.1)

where the probability is taken over the randomness of the set of defective items. Our main

contributions are as follows:

• In Section 3.2, we provide preliminary definitions and results that will be used in later

parts of this chapter.

• In Section 3.3, we generalize the constraints of γ-divisible items and ρ-sized tests into

a general constraint and use it to provide information theoretic lower bounds for both

constraints.

• In Section 3.4, we apply an existing algorithm to the case of γ-divisible items and study

the number of tests for reliable recovery.
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Our analysis will make use of several techniques and results from probability theory and infor-

mation theory.

3.2 Preliminary Definitions and Results

We first introduce some definitions below which will be useful to us in this chapter.

Definition 3.2.1. Consider an item i and a set of items L not including i. We say that item i

is masked by L if every test that includes i, also includes at least one member of L.

Definition 3.2.2. The number of collisions between item i and a set of items L refers to the

number of test(s) that include item i, and also includes at least one member of L.

Next, we introduce some lemmas which will be used for some parts of our proofs later.

Lemma 3.2.1. For γ ∈ Θ
(
(log n)c

)
for some c ∈ [0, 1), and d ∈ Θ(nθ) for some θ ∈ (0, 1], we

have
(
1± 1

d1/γ

)γ
= 1± o(1).

Proof. Note that since
(
1± 1

d1/γ

)γ → 1 if d1/γ � γ, it suffices to show that d1/γ � γ. We have

θ(log n)1−c � c log log n (3.2)

=⇒ θ

(log n)c
(log n)� log(log n)c (3.3)

=⇒ log(nθ/(logn)c)� log(log n)c (3.4)

=⇒ nθ/(logn)c � (log n)c. (3.5)

Since d ∈ Θ(nθ) and γ ∈ Θ
(
(log n)c

)
, by substitution in the above equation, we get d1/γ � γ

which completes the proof.

Let W (D) be the total number of positive tests containing at least one item from D. To un-

derstand the distribution of this quantity, it is helpful to think of the process by which elements

of the columns are sampled as a coupon collector problem, where each coupon corresponds to

one of the T tests. For a single defective item, W ({i}) is the number of distinct coupons selected

when γ coupons are chosen uniformly at random from a population of T coupons. In general,
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for the defective set D of size d, the independence of distinct columns means that W (D) is the

number of distinct coupons collected when choosing γd coupons uniformly at random from a

population of T coupons. We now give a concentration measure result for W (D) around its

mean.

Lemma 3.2.2. When making γd ∈ o(T ) draws with replacement from a total of T coupons, the

total number of distinct coupons W (D) satisfies

P[|W (D) − γd(1− δn)| ≥ (γd)2/3] ≤ 2 exp(−2(γd)1/3), (3.6)

where δn ∈ O
(γd
T

)
.

Proof. For any coupon, the probability of not being selected is 1−
(
1− 1

T

)γd
. This gives us

E[W (D)] =

(
1−

(
1− 1

T

)γd)
T (3.7)

(a)
=

(
1−

(
1− γd

T
+O

((γd
T

)2))
T (3.8)

=

(
γd

T
−O

((γd
T

)2))
T (3.9)

(b)
= γd(1− δn), (3.10)

where (a) is due to second order binomial approximation using Taylor series, and we introduce

δn ∈ O
(γd
T

)
in (b). Let Y1, Y2, . . . , Yγd be the labels of the selected coupons and W (γd) =

f(Y1, Y2, . . . , Yγd) be the number of distinct coupons. We have the bounded property difference

property

|f(Y1, . . . , Yj , . . . , Yγd)− f(Y1, . . . , Ŷj , . . . , Yγd)| ≤ 1 (3.11)

for any j, Y1, Y2, . . . , Yγd, and Ŷj since the largest difference we can make is swapping a distinct

coupon Yj for a non-distinct coupon Ŷj , or vice versa. McDiarmid’s inequality [20] gives

P(|f(Y1, Y2, . . . , Yγd)− E[f(Y1, Y2, . . . , Yγd)]| ≥ δ) ≤ 2 exp
(
− 2δ2

γd

)
. (3.12)

Setting δ = (γd)2/3, we get the desired result.

Let W (D\i) and W (D\i,j) be the total number of positive tests containing at least one item

in D \ {i}, and the total number of positive tests containing at least one item in D \ {i, j}

respectively. We then have the following two corollaries.
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Corollary 3.2.2.1. When making γ(d − 1) ∈ o(T ) draws with replacement from a total of T

coupons, the total number of distinct coupons W (D\i) satisfies

P[|W (D\i) − γ(d− 1)(1− δ(1)
n )| ≥ (γ(d− 1))2/3] ≤ 2 exp(−2(γ(d− 1))1/3), (3.13)

where δ
(1)
n ∈ O

(γd
T

)
.

Corollary 3.2.2.2. When making γ(d − 2) ∈ o(T ) draws with replacement from a total of T

coupons, the total number of distinct coupons W (D\i,j) satisfies

P[|W (D\i,j) − γ(d− 2)(1− δ(2)
n )| ≥ (γ(d− 2))2/3] ≤ 2 exp(−2(γ(d− 2))1/3), (3.14)

where δ
(2)
n ∈ O

(γd
T

)
.

3.3 Information Theoretic Lower Bound

In this section, we present our information theoretic lower bounds for sparse group testing under

the γ-divisible items constraint and the ρ-sized tests constraints.

3.3.1 γ-divisible Items Case

Theorem 3.3.1. Under the combinatorial prior, for any sufficiently large n, sufficiently small

ε > 0, and d ∈ Θ(nθ) for some positive constant θ ∈ (0, 1), any non-adaptive group testing

algorithm that tests each item at most γ ∈ o(log n) times and has a probability of error of at

most ε requires

T ≥ γd
(n
d

) 1−ε
γ

(1+o(1))
(1 + o(1)). (3.15)

Proof. See Section 3.5.1.

We will now introduce both the Combinatorial Orthogonal Matching Pursuit (COMP) algo-

rithm and the Smallest Satisfying Set (SSS) algorithm which will be used in the next theorem.

Definition 3.3.1. The COMP algorithm for noiseless non-adaptive group testing is given as

follows: mark each item that appears in a negative test as non-defective, and refer to every

other item as a possibly defective. We write PD for the set of such items. Mark every item in

PD as defective.
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We observe that the COMP algorithm fails when at least one non-defective item is masked by

D (equivalently, it succeeds when zero non-defective items are masked). For the SSS algorithm,

we state a key definition first before describing the algorithm.

Definition 3.3.2. We say that a putative defective set J is satisfying if:

1. No negative test contains a member of J .

2. Every positive test contains at least one member of J .

Definition 3.3.3. The SSS algorithm for noiseless non-adaptive group testing is given as fol-

lows: find the smallest satisfying set (breaking ties arbitrarily), and take that as the estimate

D̂SSS.

Note that the true defective set D is certainly a satisfying set, and hence SSS is guaranteed

to return a set of no larger size, giving us |D̂SSS| ≤ |D|. However, it may not be the case that

D̂SSS ⊆ D. We can identify a particular failure event for SSS: If a defective item i ∈ D is

masked by the other defective items D \ {i}, then D \ {i} will be a smaller satisfying set, so

SSS is certain to fail. We study the probability of this failure event in detail in the proof of our

next result, Theorem 3.3.2.

The analysis of both algorithms will be important in proving the following result, which is

obtained by looking at a specific test design X.

Theorem 3.3.2. Consider a near-constant column weight design, with d ∈ Θ(nθ) for some

positive constant θ ∈ (0, 1), any non-adaptive group testing algorithm that tests each item at

most γ ∈ Θ
(
(log n)c

)
times for some c ∈ [0, 1) with tests

T ≤ γd
1
γ (d− 1)(1 + o(1)), (3.16)

has an error probability bounded away from zero.

Proof. See Section Section 3.5.2.

This theorem states that by considering a near-constant column weight design, the converse

in Theorem 3.3.2 is stronger (lower bound on T increases) than the converse in Theorem 3.3.1

when d is “large”, or specifically when the sparsity parameter θ is large.
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3.3.2 ρ-sized Tests Case

Theorem 3.3.3. Under the combinatorial prior, for any sufficiently large n, sufficiently small

ε > 0, and d ∈ Θ(nθ) for some positive constant θ ∈ (0, 1), any non-adaptive group testing

algorithm that includes ρ ∈ Θ((nd )β) (for some constant β ∈ [0, 1)) items per test and has a

probability of error of at most ε requires at least 1−ε
1−β (nρ )(1 + o(1)) tests.

Proof. See Section 3.5.3.

Our bounds obtained are consistent with the bounds in [13]. Note that the Fano’s inequality

approach in the proofs does not carry through for the adaptive setting, since our bounding

of entropy H(yt) of individual testing outcomes critically relies on the test matrix X being

independent of u.

3.4 Algorithm for γ-divisible Items

We focus on the near-constant tests per item design for the γ-divisible items constraint, where

γ ∈ o
(

log
(
n
d

))
tests for each item are chosen uniformly at random with replacement.

We will use the Definite Defectives (DD) decoding algorithm which is defined as follows.

Definition 3.4.1. The Definite Defectives (DD) algorithm for noiseless non-adaptive group

testing has two keys steps.

1. Since yt = 1 if and only if the test pool contains a defective item, we can be sure that

each item that appears in a negative test is not defective. We form a list of such items

from all the negative tests, which we refer to as the guaranteed non-defective (ND) set

and the rest of the items PD := {1, . . . , n} \ ND are considered in the possibly defective

(PD) set.

2. Since every positive test must contain at least one defective item, if a test with Y = 1

contains exactly one item from PD, then we can be certain that the item in question is

defective. The DD algorithm estimates D using D̂ to be the set of PD items which appear

in a positive test with no other PD item.
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Note that the first step is just our COMP algorithm. The first step makes no mistake in

adding to ND (items are correctly marked as non-defective), and the second step also makes

no mistake in adding to D̂ (items are correctly marked as defective). Hence, any errors due

to DD come from marking a true defective as non-defective in the second step, meaning that

our estimate D̂ satisfies D̂ ⊆ D. The choice to mark all remaining items as non-defective is

motivated by the sparsity of the problem (recall that d ∈ o(n)), since a priori an item is much

less likely to be defective than non-defective.

Using DD, we have the following theorem.

Theorem 3.4.1. For γ ∈ Θ
(
(log n)c

)
for some c ∈ [0, 1), d ∈ Θ(nθ) for some θ ∈ (0, 1),

α2 ∈ (0, 1), and any function βn decaying as n increases, there exists a randomized design

testing each item at most γ times that uses at most

T = γdmax

{
2

1
α2
H2(max{α2,

1
2
})
( d
βn

) 1
α2γ , 21/γ

(n− d
d

) 1
γ
( d
βn

) 1
(1−α2)γ2

}
. (3.17)

tests and ensures a reconstruction error of at most

exp

(
− 3d

16

(βn
d

) 1
(1−α2)γ)

)
+ 2 exp(−2(γd)1/3) + 2βn(1 + o(1)). (3.18)

Proof. See Section 3.5.4.

We now provide an interpretation for the bound on T . We consider two scaling regimes

below, where we assume that βn is a slowly decaying term (e.g., log factors only). Hence, we

will omit βn from our asymptotic bounds on T . The regimes are

1. Large γ: γ ∈ Θ((log n)c) for some c ∈ (0, 1), and d ∈ Θ(nθ) for some θ ∈ (0, 1)

2. Constant γ: γ ∈ O(1), and d ∈ Θ(nθ) for some θ ∈ (0, 1).

Let us first introduce a variable η, defined as

η = lim
n→∞

log(nd )

γ log( Tγd)
. (3.19)

which will be used in our plots later.
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Figure 3.1: Plots of the variable η, such that T ∼ γd
[(
n
d

)1/γ](1+o(1))/η
, against the sparsity

parameter θ for the converse, DD algorithm, and COMP algorithm, when n → ∞ and γ =

(log n)c for some c ∈ (0, 1).

For regime 1 (large γ), When α2 is a fixed constant close to 1, we have 2
1
α2
H2(max{α2,

1
2
}) ≈ 1,

and
(
n−d
d

)1/γ
d

1
(1−α2)γ2 =

(
n
d

)(1−o(1))/γ
. To see the latter, note that

(n− d
d

) 1
γ
d

1
(1−α2)γ2 =

( n− d
d1−O(1/γ)

) 1
γ

(3.20)

=

(
n

1
(1−O(1/γ) (1−O(d/n))

1
1−O(1/γ)

d

) 1−O(1/γ)
γ

(3.21)

=
(n
d

) 1−o(1)
γ

(3.22)

By substituting the scaling regimes into the bound in Theorem 3.4.1 and omitting βn, we have

T = Ω̃
(
γdmax{nθ, n1−θ}

1
γ

)
. (3.23)

We plot η against θ ∈ (0, 1) in Figure 3.1 to show how the asymptotic bound of the DD algorithm

compares to the converse and the COMP algorithm’s bound in Theorem 1.4.1. Note that for

the COMP algorithm, we have omitted ε in our asymptotic bound, giving us T = Ω̃(γdn1/γ).

From Figure 3.1, we see that the DD algorithm performs better than the COMP algorithm, and
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Figure 3.2: Plots of the variable η, such that T ∼ γd
[(
n
d

)1/γ](1+o(1))/η
, against the sparsity

parameter θ for the converse, DD algorithm, and COMP algorithm, when n→∞ and γ = 10.

achieves the optimal limit η when θ ∈ (0, 0.5].

For regime 2 (constant γ), we substitute the scaling regimes and omitting βn to get

T = Ω̃
(
γdmax

{
n

θ
α2γ , n

1−θ
γ

+ θ
(1−α2)γ2

})
. (3.24)

We numerically optimize with respect to α2 to obtain our bound on T . Figure 3.2 shows how the

asymptotic bound of the DD algorithm compares to the converse and the COMP algorithm’s

bound in Theorem 1.4.1 (ε is again omitted from the asymptotic bound), when γ = 10. This is

done by plotting η against θ ∈ (0, 1) like before. From Figure 3.2, we see that the DD algorithm

performs better than the COMP algorithm.

3.5 Proofs

3.5.1 Proof of Theorem 3.3.1 (Converse for γ-divisible Items)

Our proof is similar to the proof presented in [13]. Let gt be the number of items in the t-th test

and p−t be the probability that the t-th test outcome yt is negative. Our key insight is that both
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constraints can be generalized to a general constraint. We observe that the γ-divisible items

constraint restricts the number of ones in the testing matrix X to be less than or equal to γd.

Similarly, the ρ-sized tests constraint restricts the number of ones in the testing matrix X to be

less than or equal to ρT . Hence, we can work with the general constraint, which is a restriction

on the number of ones in X. Our proof treats both constraints as a general constraint which is

a constraint on the number of ones in the testing matrix X. More formally, we want to find the

converse for #ones ≤ c subjected to
∑T

t=1 gt ≤ c. Under the combinatorial prior, we have the

following expression for p−t :

p−t =

(
n−gt
d

)(
n
d

) =
(n− d)!

(n− d− gt)!
· (n− gt)!

n!
(3.25)

=
(n− d)(n− d− 1) . . . (n− d− gt + 1)

n(n− 1) . . . (n− gt + 1)
(3.26)

=

gt−1∏
k=0

(
1− d

n− k

)
≤
(

1− d

n

)gt
. (3.27)

Note that when p−t >
1
2 , (3.27) implies that

(
1− d

n

)gt > 1
2 , which simplifies to give:

gt <
− log 2

log
(
1− d

n

) (a)
=
n log 2

d
(1 + o(1)), (3.28)

where (a) follows from the fact that d
n ∈ o(1) implying

(
1 − d

n

)
= exp

(
− d

n

)
(1 + o(1)). Using

the bound on gt, we partition tests T into sets Sl (light set), and Sh (heavy set) where t ∈ Sl if

gt <
n log 2
d (1 + o(1)), and t ∈ Sh otherwise.

For the light set Sl, we have

p−t
(a)
=

gt−1∏
k=0

(
1− d

n− k

)
≥
(

1− d

n− gt

)gt
(3.29)

(b)

≥ 1− dgt
n− gt

(c)
= 1− dgt(1 + o(1))

n
, (3.30)

where (a) is from (3.27), (b) is by Bernoulli’s identity [22], and (c) follows from the fact that

we have gt ∈ o(n) since gt <
n log 2
d (1 + o(1)). We want to bound

∑|Sl|
t=1H(yt). Since 1− p−t < 1

2
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for t ∈ Sl, we bound the entropy of each test as follows:

H(yt) = H2(p−t ) = H2(1− p−t ) ≤ H2

(dgt(1 + o(1))

n

)
(3.31)

=
dgt(1 + o(1))

n
log
( n

dgt(1 + o(1))

)
(3.32)

−
(

1− dgt(1 + o(1))

n

)
log
(

1− dgt(1 + o(1))

n

)
(3.33)

(a)

≤ dgt(1 + o(1))

n
log
( n

dgt(1 + o(1))

)
+
dgt(1 + o(1))

n
(3.34)

=
dgt(1 + o(1))

n

[
log
( n

dgt(1 + o(1))

)
+ 1

]
, (3.35)

where (a) uses the fact that − log(1 − x) ≤ x
1−x for x < 1, x 6= 0. This gives us H(yt) ≤ f(gt)

where f(gt) = dgt(1+o(1))
n [log( n

dgt(1+o(1))) + 1]. Using the above results, we have

|Sl|∑
t=1

H(yt) ≤
|Sl|
|Sl|

|Sl|∑
t=1

f(gt) = |Sl|
|Sl|∑
t=1

1

|Sl|
f(gt) (3.36)

(a)

≤ |Sl|f
( |Sl|∑
t=1

1

|Sl|
gt

)
≤ |Sl|f

( c

|Sl|

)
, (3.37)

where (a) is by Jensen’s inequality since f ′′(gt) = −d(1+o(1))
ngt

< 0 (i.e., concave), 1
|Sl| ≥ 0, and∑|Sl|

t=1
1
|Sl| = 1.

For the heavy set Sh, we naively bound each entropy by 1:

|Sh|∑
t=1

H(yt) ≤ |Sh|
(a)

≤ c
n log 2
d (1 + o(1))

(3.38)

=
cd

n log 2
(1 + o(1)). (3.39)

where (a) is because gt ≥ n log 2
d (1 + o(1)). Combining (3.37) and (3.39), we have

T∑
t=1

H(yt) ≤ |Sl|f
( c

|Sl|

)
+

cd

n log 2
(1 + o(1)) (3.40)

=
cd(1 + o(1))

n

[
log
( n|Sl|
cd(1 + o(1))

)
+ 1

]
+

cd

n log 2
(1 + o(1)) (3.41)

≤ cd(1 + o(1))

n

[
log
( nT

cd(1 + o(1))

)
+ 1 +

1

log 2

]
. (3.42)

Note that u→ y→ û forms a Markov chain. By Fano’s inequality [8], we have

H(u|û) ≤ H2(Pe) + Pe log(|U| − 1), (3.43)

32



where u is uniformly distributed over U , the length of all length-n, d-sparse binary vectors.

Weakened and rearranged, we have

Pe ≥ 1− I(u; û) + log 2

log |U|
(3.44)

≥ 1−
∑T

t=1H(yt) + log 2

log |U|
, (3.45)

because

I(u; û)
(a)

≤ I(u; y)
(b)
= H(y)−H(y|u)

(c)

≤ H(y)
(d)

≤
∑
t

H(yt), (3.46)

where (a) by the data processing inequality, (b) by the definition of mutual information, (c)

by the non-negativity of entropy (conditional) and (d) by the subadditivity of entropy. Since

c = nγ for γ-divisible items, we substitute c = nγ into (3.42) and further substitute the result

into (3.45). Thus, we have

ε ≥ 1−
γd(1 + o(1))[log( T

γd(1+o(1))) + 1 + 1
log 2 ] + log 2

log
(
n
d

) , (3.47)

which simplifies to

T ≥ γd exp

[
(1− ε) log(nd )− log 2

d

γ(1 + o(1))
− 1− 1

log 2

]
(1 + o(1)) (3.48)

= γd exp

[
1− ε
γ

(1 + o(1)) log
(n
d

)]
(1 + o(1)) (3.49)

= γd
(n
d

) 1−ε
γ

(1+o(1))
(1 + o(1)). (3.50)

3.5.2 Proof of Theorem 3.3.2 (Converse for γ-divisible Items)

For the SSS algorithm, we look at a failure event where any defective item i ∈ D is masked by

the other defective items D\{i}. We denote the error probability of such an event by PSSS(err).

For the COMP algorithm, we look at a failure event where at least one non-defective item is

masked by D. We denote the error probability of such an event by PCOMP(err). Here, we write

Ai for the event that item i ∈ D is masked by D\{i}. Using union bound followed by de Caen’s

lower bound on union from [10], we get

PSSS(err) ≥ P
( ⋃
i∈D

Ai

)
≥
∑
i∈D

P(Ai)
2

P(Ai) +
∑

j∈D\{i} P(Ai ∩Aj)
. (3.51)
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It was proved in [1] that if PSSS(err) +PCOMP(err) > 1 + ε for some ε > 0 that remains bounded

away from zero as n → ∞, then the error probability is also bounded away from zero for an

arbitrary algorithm. Hence, it suffices to show that PSSS(err) is bounded away from zero, and

PCOMP(err) → 1. We will bound the right hand side of (3.51) by bounding the numerator

and denominator separately, before combining to bound PSSS(err). Afterwards, we will bound

PCOMP(err).

We claim that it suffices to show that the error probability is bounded away from zero some

T satisfying

T = γd
1
γ (d− 1)(1 + o(1)). (3.52)

Although in the theorem we have T ≤ γd1/γ(d − 1)(1 + o(1)), we can choose T ∈ Θ(γd · d1/γ)

because if the error probability is already bounded away from zero at the bound, we cannot

hope to do any better with fewer tests.

Bounding Masking Error Probability - Numerator Term

Fixing the index i of some defective item, we note that conditioned on W (D\i) = w, the event

Ai occurs if each test that item i occurs in is contained in the w “already hit” tests. Hence, for

any constant c1 > 0, we have

P(Ai) =
∑
w

P(Ai|W (D\i) = w)P(W (D\i) = w) (3.53)

=
∑
w

(w
T

)γ
P(W (D\i) = w) (3.54)

≥
∑

w≥c1γ(d−1)

(w
T

)γ
P(W (D\i) = w) (3.55)

≥
∑

w≥c1γ(d−1)

(c1γ(d− 1)

T

)γ
P(W (D\i) = w) (3.56)

=
(c1γ(d− 1)

T

)γ
P(W (D\i) ≥ c1γ(d− 1)). (3.57)

Bounding Masking Error Probability - Denominator Term

We first derive a bound for P(Ai ∩ Aj |W (D\i,j) = w). Just for this part, we represent columns

of X corresponding to items i and j by lists Ti = {ti1, . . . , tiγ} and Tj = {tj1, . . . , tjγ}. Each
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list entry is obtained by choosing t ∈ {1, . . . , T} uniformly at random with replacement, so

duplicates may occur. Without loss of generality, we assume that the w tests containing items

from D \ {i, j} are those indexed by 1, . . . , w. Any given list occurs with probability 1/T γ .

Letting Ai be the set of list pairs (Ti, Tj) under which the event Ai occurs, and similarly for Aj ,

we have

P(Ai ∩Aj |W (D\i,j) = w) =
Nij

T 2γ
, (3.58)

where

Nij =
∑
Ti

∑
Tj

1{(Ti, Tj) ∈ Ai ∩Aj}, (3.59)

is the number of pairs of lists in Ai ∩ Aj . Here the sets Ai and Aj implicitly depend on w.

To bound Nij , we separately consider the number of “new positive tests” caused by items i

and j; that is, not among the first w. Specifically, letting Nij(l) be defined as above with the

summation limited to the case that there are l such new positive tests, we have

Nij =

γ∑
l=0

Nij(l), (3.60)

where the summation goes up to γ due to the fact that any new positive test containing i must

also contain j and vice versa; otherwise, the masking under consideration would not occur.

To bound Nij(l), we consider the following procedure for choosing the lists:

• From T − w tests, choose l of them to be the new defective tests. This is one of
(
T−w
l

)
options.

• For both i and j, assign one list index from {1, . . . , γ} to each of the l new defective tests.

This is at most γl options each, for γ2l in total.

• For both i and j, the remaining γ − l list entries are chosen arbitrarily from the w + l

positive tests. This is (w + l)γ−l options each, for (w + l)2(γ−l) in total.
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Combining these terms gives

Nij(l) ≤
(
T − w
l

)
· γ2l · (w + l)2(γ−l) (3.61)

≤ (T − w)l · γ2l · (w + γ)2(γ−l) (3.62)

= (w + γ)2γ ·
(γ2(T − w)

(w + γ)2

)l
. (3.63)

Under the assumption that w ≥ c1γ(d − 2), the bracketed term γ2(T−w)
(w+γ)2

is less than any fixed

ε1 > 0 for sufficiently large n. To see this, recall that T ∈ Θ(γd · d1/γ) = Θ(γnθ+θ/γ) and

w ∈ Ω(γd) = Ω(γnθ). By substituting the scaling regime for T and w into the bracketed term

above and taking the log, we get

log
γ2(T − w)

(w + γ)2
= log

γ2(Θ(1)γnθ+θ/γ − Ω(1)γnθ)

(Ω(1)γnθ + γ)2
(3.64)

(a)

≤ log
Θ(1)γ3nθ+θ/γ

Ω(1)γ2n2θ
(3.65)

= log
(Θ(1)

Ω(1)

)
+ log(γnθ/γ−θ) (3.66)

= log
(Θ(1)

Ω(1)

)
+ log γ +

( θ
γ
− θ
)

log n, (3.67)

where (a) is by using Θ(1)γnθ+θ/γ −Ω(1)γnθ ≤ Θ(1)γnθ+θ/γ and Ω(1)γnθ + γ ≥ Ω(1)γnθ. The

term above tends to −∞ when γ > 1 because γ ∈ o(log n). This implies that the bracketed

term in (3.63), γ2(T−w)
(w+γ)2

→ 0 as n→∞. Hence, summing over l gives

Nij ≤
γ∑
l=0

(w + γ)2γ ·
(γ2(T − w)

(w + γ)2

)l
(3.68)

≤ (w + γ)2γ ·
∞∑
l=0

εl1 (3.69)

= (w + γ)2γ · 1

1− ε1
. (3.70)

Substituting the above result into (3.58), we get

P(Ai ∩Aj |W (D\i,j) = w) ≤
(w + γ

T

)2γ
· 1

1− ε1
(3.71)
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Now for any c1, c2 > 0, we have

∑
j∈D\{i}

P(Ai ∩Aj) = (d− 1)
∑
w

P(Ai ∩Aj |W (D\i,j) = w)P(W (D\i,j) = w) (3.72)

≤ d− 1

1− ε1

∑
c1γ(d−2)≤w≤c2γ(d−2)

(w + γ

T

)2γ
P(W (D\i,j) = w)

+ (d− 1)P(W (D\i,j) /∈ [c1γ(d− 2), c2γ(d− 2)]) (3.73)

≤ d− 1

1− ε1

(c2γ(d− 2) + γ

T

)2γ
P(c1γ(d− 2) ≤W (D\i,j) ≤ c2γ(d− 2))

+ (d− 1)P(W (D\i,j) < c1γ(d− 2)) + (d− 1)P(W (D\i,j) > c2γ(d− 2)).

(3.74)

Combining Both Terms

We choose

c1 = min

{
1− δ(1)

n −
1

(γ(d− 1))1/3
, 1− δ(2)

n −
1

(γ(d− 2))1/3

}
(3.75)

= 1− δ(3)
n −

1

(γ(d− 2))1/3
(3.76)

c2 = 1− δ(2)
n +

1

(γ(d− 2))1/3
, (3.77)

where δ
(3)
n = max

{
δ

(1)
n , δ

(2)
n

}
∈ O

(γd
T

)
→ 0. With our choices, the concentration results for

both W (D\i) and W (D\i,j) in Corollary 3.2.2.1 and Corollary 3.2.2.2 respectively will hold. We

also introduce

c3 = 1 +
(d− 2

d− 1

)
(−δ(2)

n + (γ(d− 2))−1/3), (3.78)

and note the useful fact

c3γ(d− 1) = c2γ(d− 2) + γ, (3.79)

which will be used later.

Applying the concentration results from Corollary 3.2.2.1 and Corollary 3.2.2.2, we get

P(Ai)
(a)

≥
(c1γ(d− 1)

T

)γ
(1− o(1)) (3.80)∑

j∈D\{i}

P(Ai ∩Aj)
(b)

≤ d− 1

1− ε1

(c2γ(d− 2) + γ

T

)2γ
(1− o(1)) + o(1), (3.81)
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where in (a), we substitute our chosen c1 into the P(·) part of (3.57), and then apply the

concentration result in Corollary 3.2.2.1. In (b), we substitute our chosen c1 and c2 into the

P(·) parts of (3.74), and then apply the concentration results in Corollary 3.2.2.2. Note that we

also used the fact that 2(d− 1) exp(−(γ(d− 2))1/3)→ 0 since γ ≥ 1 and d→∞. Also, we have

P(Ai) ≤
(γ(d− 1)

T

)γ
, (3.82)

because the maximum number of positive tests that contain at least one item in D \ {i} is at

most γ(d− 1). Combining the results in (3.80), (3.82), and (3.81) into (3.51), we obtain

PSSS(err) ≥
∑
i∈D

(
c1γ(d−1)

T

)2γ
(1− o(1))(

γ(d−1)
T

)γ
+ d−1

1−ε1

(
c2γ(d−2)+γ

T

)2γ
(1− o(1)) + o(1)

(3.83)

(a)
=

d
(
γ(d−1)
T

)2γ
c2γ

1 (1− o(1))(
γ(d−1)
T

)γ
+ d−1

1−ε1

(
γ(d−1)
T

)2γ
c2γ

3 (1− o(1)) + o(1)
(3.84)

=
d
(
γ(d−1)
T

)γ
c2γ

1 (1− o(1))

1 + d−1
1−ε1

(
γ(d−1)
T

)γ
c2γ

3 (1− o(1)) + o(1)
(3.85)

=
d
(
c21γ(d−1)

T

)γ
(1− o(1))

1 + d−1
1−ε1

(
c23γ(d−1)

T

)γ
(1− o(1)) + o(1)

, (3.86)

where (a) is by applying (3.79) in the denominator. Substituting T = γd1/γ(d− 1)(c2
3)(1− ε2)

for some constant ε2 > 0 into (3.86), we get

PSSS(err) ≥
d
(

c21γ(d−1)

γd1/γ(d−1)(c23)(1−ε2)

)γ
(1− o(1))

1 + d−1
1−ε1

(
c23γ(d−1)

γd1/γ(d−1)(c23)(1−ε2)

)γ
(1− o(1)) + o(1)

(3.87)

=

(
c1
c3

)2γ( 1
1−ε2

)γ
(1− o(1))

1 + d−1
d(1−ε1)

(
1

1−ε2

)γ
(1− o(1)) + o(1)

(3.88)

(a)
=

(
1− δ(2)

n − (γ(d− 2))−1/3
)2γ(

1 +
(
d−2
d−1

)
(−δ(2)

n + (γ(d− 2))−1/3)
)2γ ·

1− o(1)

(1− ε2)γ + d−1
d(1−ε1)

(3.89)

(b)
=

1− o(1)

(1− ε2)γ + d−1
d(1−ε1)

, (3.90)

where we substitute c1 and c3 in (a). In (b), we note that both the numerator and denominator

are in
(
1−O

(
1

d1/γ

)
±O

(
1

(γd)1/3

))2γ
=
(
1−O

(
1

d1/γ

))2γ
, and then apply Lemma 3.2.1. Consider the

scaling regime γ ∈ Θ
(
(log n)c

)
for some c ∈ [0, 1). Then, the right hand side above approaches

1 if c > 0 (large γ) and is typically close to 1 if c = 0 (constant γ).
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Bounding COMP Error Probability

For any non-defective item i /∈ D, and w ∈ [γd(1− δn)− (γd)2/3, γd(1− δn) + (γd)2/3], we have

P(i masked by D|W (D) = w) ≥ min
w∈[γd(1−δn)−(γd)2/3

,γd(1−δn)+(γd)2/3]

P(i masked by D|W (D) = w) (3.91)

(a)
=
(γd(1− δ(4)

n )

T

)γ
, (3.92)

where (a) is because we introduced δn − (γd)−1/3 ≤ δ
(4)
n ≤ δn + (γd)−1/3 (where w depends on

δ
(4)
n ), which results in P(i masked by D|W (D) = w) to be minimized. From the inequality of w,

we know that δ
(4)
n ∈ O

(γd
T

)
= O

(
1

d1/γ

)
. Using the above equation, we derive an upper bound

on PCOMP(suc):

PCOMP(suc) =
∑
w

P(W (D) = w)PCOMP(suc|W (D) = w) (3.93)

=
∑
w

P(W (D) = w)P(all i not masked by D|W (D) = w) (3.94)

=
∑
w

P(W (D) = w)
(

1− P(i masked by D|W (D) = w)
)n−d

(3.95)

=
∑

w∈[γd(1−δn)−(γd)2/3

,γd(1−δn)+(γd)2/3]

P(W (D) = w)
(

1− P(i masked by D|W (D) = w)
)n−d

+
∑

w/∈[γd(1−δn)−(γd)2/3

,γd(1−δn)+(γd)2/3]

P(W (D) = w)
(

1− P(i masked by D|W (D) = w)
)n−d

(3.96)

(a)

≤
(

1−
(γd(1− δ(4)

n )

T

)γ)n−d
+ 2 exp(−2(γd)

1
3 ) (3.97)

(b)
=

(
1−

(γd(1− δ(4)
n )

T

)γ)n−d
+ o(1), (3.98)

where in (a) the first term is obtained by first applying (3.92), then simply upper bounding

P(W (D) ∈ [γd(1− δn)− (γd)2/3, γd(1− δn) + (γd)2/3]) by 1. For the second term, we first upper

bound
(
1−P(i masked by D|W (D) = w)

)n−d
by 1. Next, we apply Lemma 3.2.2 to upper bound

P(W (D) /∈ [γd(1 − δn) − (γd)2/3, γd(1 − δn) + (γd)2/3]). (b) is obtained by using the fact that

2 exp(−2(γd)
1
3 ) → 0 since γ ≥ 1 and d → ∞. Applying the above results, we provide a lower
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bound on PCOMP(err):

PCOMP(err) = 1− PCOMP(suc) (3.99)

≥ 1−
(

1−
(γd(1− δ(4)

n )

T

)γ)n−d
− o(1) (3.100)

= 1−
(

1−
(γd
T

)γ
(1− δ(4)

n )γ
)n−d

− o(1). (3.101)

We stick to the same T = γd
1
γ (d− 1)(c2

3)(1− ε2) for some constant ε2 > 0. Substituting our T

into (3.101), we get

PCOMP(err) ≥ 1−
(

1−
( γd

γd1/γ(d− 1)(c2
3)(1− ε2)

)γ
(1− δ(4)

n )γ
)n−d

− o(1) (3.102)

= 1−
(

1− 1

d

(
1 +

1

d− 1

)γ (1− δ(4)
n )γ

c2γ
3 (1− ε)γ

)n−d
− o(1) (3.103)

(a)
= 1−

(
1− (1 + o(1))

d(1− ε2)γ

)n−d
− o(1) (3.104)

(b)
= 1− exp

(
− (n− d)(1 + o(1))

d(1− ε2)γ

)
− o(1) (3.105)

= 1− exp
(
− n(1 + o(1))

d(1− ε2)γ

)
− o(1), (3.106)

where (a)
(
1+ 1

d−1

)γ
= 1+o(1) because d� γ. We also note that c3, 1− δ(4)

n ∈ 1−O
(

1
d1/γ

)
and

apply Lemma 3.2.1 to get c2γ
3 , (1−δ(4)

n )γ ∈ 1−o(1). (b) is by first noting that 1+o(1)
d(1−ε2)γ ∈ o(1), then

applying 1−x = e−x(1+o(1)) when x ∈ o(1). To see why 1+o(1)
d(1−ε2)γ ∈ o(1), we can take the log of the

denominator and substitute the respective scaling regimes to get θ log n+(log n)c log(1−ε2)� 0.

The right hand side approaches 1 as n→∞ since exp
(
− n

d(1−ε2)γ

)
→ 0 because d ∈ Θ(nθ) for

some θ ∈ (0, 1).

3.5.3 Proof of Theorem 3.3.3 (Converse for ρ-sized Tests)

We follow the same steps as Theorem 3.3.1 until equation (3.45). Since c = ρT for ρ-sized tests,

we substitute c = ρT into (3.42) and further substitute the result into (3.45). Thus, we have

ε ≥ 1−
ρTd(1+o(1))

n [log( n
ρd(1+o(1))) + 1 + 1

log 2 ] + log 2

log
(
n
d

) , (3.107)
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which simplifies to

T ≥ n

ρ(1 + o(1))
×

(1− ε) log(nd )− log 2
d

log( n
ρd(1+o(1))) + 1 + 1

log 2

(3.108)

=
n

ρ(1 + o(1))
×

(1− ε) log(nd )

log( nρd)
(1 + o(1)) (3.109)

(a)
=

1− ε
1− β

(n
ρ

)
(1 + o(1)), (3.110)

where (a) is because ρ ∈ Θ((n/d)β).

3.5.4 Proof of Theorem 3.4.1 (DD Performance)

We observe that first and second steps recover D correctly when each defective item i is not

masked by PD \ {i}. Hence, we want to derive a bound on T when the probability of each

defective item i being masked by PD \ {i} is vanishing. Each defective item i is masked by

PD\{i} only when the number of collisions between i and PD is γ. Since PD can be split into

two sets D and PD \ D, we can consider the number of collisions between i and each of these

two sets separately. This motivates the main steps of our proof:

1. We derive a concentration result on the number of non-defective items in PD.

2. We derive a bound on T when the probability of the event, where there exists a defective

item i where the number of collisions between i and D \ {i} is “close to γ”, is vanishing.

3. Conditioning the event where for all i ∈ D, the number of collisions between defective item

i and D\{i} “is small”, we derive a bound on T when the probability of the event, where

every test that includes defective item i—where it is the only defective item—contains at

least one item from PD \ D, is vanishing.

4. Taking the maximum between the two bounds on T gives us the required number of tests.

We analyse the two steps of the DD algorithm separately before combining their results together.
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Analysis of the First Step

Let G = |PD \ D| denote the number of non-defective items in PD, where G =
∑n−d

i=1 Gi with

Gi ∈ {0, 1}. Setting the number of positive tests as W (D) = w(D), we have

(G|W (D) = w(D)) ∼ Binomial

(
n− d,

(w(D)

T

)γ)
, (3.111)

where
(
w(D)

T

)γ ≤ (γdT )γ because each of the d defective items can be tested at most γ times,

meaning that the number of positive tests is at most γd. Since P[|Gi| ≤ 1] = 1, then for all

positive t, we have the following by Bernstein’s inequality:

P
[ n−d∑
i=1

Gi > E[G] + t
]
≤ exp

( −1
2 t

2∑n−d
i=1 Var[Gi] + 1

3 t

)
(3.112)

(a)

≤ exp

( −1
2 t

2∑n−d
i=1 E[G2

i ] + 1
3 t

)
(3.113)

(b)

≤ exp

( −1
2 t

2∑n−d
i=1 E[Gi] + 1

3 t

)
(3.114)

(c)

≤ exp

( −1
2 t

2

E[G] + 1
3 t

)
, (3.115)

where (a) is because Var[Gi] = E[G2
i ] − (E[Gi])

2 ≤ E[G2
i ], (b) is because Gi ∈ {0, 1} resulting

in E[G2
i ] = E[Gi], and (c) is due to the linearity of expectation.

Analysis of the Second Step

Firstly, we want to show that the event in which the number of collisions between a chosen

defective item i and D \ {i} is “close to γ” (to be formalized later) is a rare event. It is easy to

see that rearranging the columns of the test matrix does not change the items being involved

in each test. Hence, for clarity, we think of the test matrix being rearranged, where the first d

columns are for the defective items, as shown in Figure 3.3. Referring to Figure 3.3, let Ci be

the number of collisions between a given defective item i (with i = d in Figure 3.3) and D\{i}.

Recall that W (D\i) denotes the number of positive tests containing at least one item in D \ {i}.

Given W (D\i) = w(D\i), the probability of defective item i occurring in any of those tests equals

w(D\i)

T . This gives us the following distribution

(Ci|W (D\i) = w(D\i)) ∼ Binomial
(
γ,
w(D\i)

T

)
, (3.116)
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Figure 3.3: Rearranged test matrix to show that collision within defectives are rare.

where w(D\i)

T ≤ γ(d−1)
T < γd

T because any w(D\i) is at most γ(d − 1). We want to show that

P[Ci ≥ α2γ] is small, where α2 ∈ (0, 1). We first note that

P[Ci = α2γ] =

(
γ

α2γ

)(w(D\i)

T

)α2γ
(1− p)γ−α2γ (3.117)

(a)

≤ 2γH2(α2)
(γd
T

)α2γ
. (3.118)

where (a) is due to
(
γ
α2γ

)
≤ 2γH2(α2), w(D\i)

T < γd
T , and (1 − p)γ−α2γ ≤ 1. We proceed to show

that P[Ci ≥ α2γ] behaves similarly to P[Ci = α2γ]:

P[Ci ≥ α2γ] =

γ∑
k=α2γ

P[Ci = k] (3.119)

≤
γ∑

k=α2γ

2γH2(k/γ)
(γd
T

)k
(3.120)

(a)

≤ 2γH2(max{α2,
1
2
})

∞∑
k=α2γ

(γd
T

)k
(3.121)

(b)
= 2γH2(max{α2,

1
2
}) (γdT )α2γ

1− (γdT )
(3.122)

(c)
= 2γH2(max{α2,

1
2
})
(γd
T

)α2γ
(1 + o(1)), (3.123)

where in (a) we note the fact that H2(p) is increasing for p ≤ 2 and decreasing for p ≥ 2. Hence,

α2 provides a tighter bound when α2 > 1/2. We used the sum to infinity of geometric series in
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(b), and the fact that γd
T ∈ o(1) in (c). By the union bound, we have the following:

P
[ d⋃
i=1

{Ci ≥ α2γ}
]
≤ d2γH2(max{α2,

1
2
})
(γd
T

)α2γ
(1 + o(1)). (3.124)

Hence, for the above union bound to approach 0, we consider the following condition for T ,

where βn is a slowly decaying term as n→∞:

2γH2(max{α2,
1
2
})
(γd
T

)α2γ
(1 + o(1)) ≤ βn

d
(1 + o(1)), (3.125)

which simplifies to

T ≥ γd2
1
α2
H2(max{α2,

1
2
})
( d
βn

) 1
α2γ . (3.126)

Now, we study the probability of defective item i not being in D̂. We will first condition

on the event that for any defective item i, the number of collisions between defective item i

and D \{i} “is small” (to be formalized later). After conditioning, we consider the event where

every test that includes defective item i—where it is the only defective item—contains at least

one item from PD \ D. This is equivalent to the event that defective item i is not in D̂. We

derive a bound on T when the probability of that event is vanishing. We start by claiming that

T ∈ Ω
(
γd
(
n
d

)1/γ
d1/γ2

)
.

We condition on the following events with their explanations below:

1.
⋂d
i=1{Ci < α2γ} because previously, we derived a bound on T that ensures P[

⋃d
i=1{Ci ≥

α2γ}] → 0. Thus, we condition on ¬[
⋃d
i=1{Ci ≥ α2γ}] ≡

⋂d
i=1{Ci < α2γ} (by De

Morgan’s law).

2. W (D) = γd(1 − δ−n ) for δ−n ∈ O
(

1
n(1−θ)/γ

)
because we want δ−n to fall within the con-

centration result in Lemma 3.2.2. Applying the bound on T from our claim, we get

δ−n ∈ O
(γd
T

)
= O

(
1

(n/d)1/γd1/γ
2

)
= O

(
1

n(1−θ)/γ

)
.

For clarity, we repeat the event that we are interested in: given
⋂d
i=1{Ci < α2γ} and W (D) =

γd(1− δ−n ), defective item i is not in D̂. The main steps to derive a bound on T are as follows:

we derive a bound on G ensuring that the event is rare, which gives us our bound on T by

further applying the concentration results from the analysis of the first step.
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We start by looking at a single defective item. Let γ̃ be the number of tests in which defective

item i is the only defective item. Recall that we conditioned on
⋂d
i=1{Ci < α2γ}. Hence, we

have γ̃ ≥ (1 − α2)γ. We want to find the probability that all γ̃ indices occur in tests where

at least one non-defective item in PD is also present. We index the first γ̃ tests from 1 to γ̃.

Let Ai be the event that the positive test indexed i (where i is from 1 to γ̃) contains at least

one non-defective item in PD. Similar to before, consider a population of γd(1− δ−n ) coupons.

A collector makes Gγ uniformly random selections with replacement. We can think of the

population as being the total number of positive tests γd(1− δ−n ), and the number of coupons

collected as Gγ: γ for each column in a total of G columns. From the coupon collection problem,

Ai is equivalent to the event that coupon i is collected. We are interested in the following:

P[A1, . . . , Aγ̃ ] =
#ways to collect coupons including all of the first γ̃ indices

#ways to collect all coupons
. (3.127)

We will bound the numerator and denominator separately. For the denominator, we can think

of lining up all the selected Gγ coupons in a row where each position can be any of the γd(1−δ−n )

coupons from the population. This gives us the following:

#ways to collect all coupons = (γd)Gγ(1− δ−n )Gγ . (3.128)

For the numerator, we have

#ways to collect coupons

including all of the first γ̃ indices
≤
[ γ̃−1∏
i=0

(Gγ − i)
]
(γd)Gγ−γ̃(1− δ−n )Gγ−γ̃ (3.129)

≤ (Gγ)γ̃(γd)Gγ−γ̃(1− δ−n )Gγ−γ̃ (3.130)

=
(G
d

)γ̃
(γd)Gγ(1− δ−n )Gγ−γ̃ . (3.131)

because each index in the set {1, 2, · · · , γ̃} must minimally take one position in the sequence of

Gγ coupons. Each index has at most Gγ choices. Afterwards, each of the remaining (Gγ − γ̃)

positions can take any of the γd(1 − δ−n ) indices. Combining the bounds on numerator and
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denominator, we have

P[A1, . . . , Aγ̃ ] =
#ways to collect coupons including all of the first γ̃ indices

#ways to collect all coupons
(3.132)

=
(G
d

)γ̃
(1− δ−n )−γ̃ (3.133)

(a)

≤
(G
d

)(1−α2)γ
(1− δ−n )−γ̃ (3.134)

(b)
=
(G
d

)(1−α2)γ
(1 + o(1)), (3.135)

where (a) is due to the assumption1 that G ≤ d and (1 − α2)γ ≤ γ̃, and (b) follows by

recalling that δ−n ∈ O
(

1
n(1−θ)/γ

)
, where the scaling regime is similar (differing only in the constant

multiplicative factor of the power) to O
(

1
d1/γ

)
= O

(
1

nθ/γ

)
, and applying Lemma 3.2.1. According

to the DD algorithm, the event where there exists a defective item not in D̂ is equivalent to

there existing a defective item where all its γ̃ indices are collected by the Gγ coupons. Applying

union bound, the bound on the probability is as follows.

P[∃ defective item not in D̂] ≤ P
[ d⋃
i=1

{all γ̃ indices of i are collected}
]

(3.136)

≤ d
(G
d

)(1−α2)γ
(1 + o(1)). (3.137)

The bound approaches 0 if
(
G
d

)(1−α2)γ ≤ βn
d where βn is a slowly decaying term as n → ∞.

Rearranging, we get

G ≤ d
(βn
d

) 1
(1−α2)γ . (3.138)

Combining the Analyses of Both Steps

We now combine our bound on G from the analysis of the second step with the concentration

result from the analysis of the first step to obtain on a bound on T . We define

Gmax = d
(βn
d

) 1
(1−α2)γ . (3.139)

Recall that E[G] = (n− d)
(
w(D)

T

)γ
, and hence, E[G] ≤ Gmax/2 is guaranteed when

(n− d)
(γd
T

)γ
≤ d

2

(βn
d

) 1
(1−α2)γ , (3.140)

1This assumption is later shown to be true when we obtain our bound on G.
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because
(
w(D)

T

)γ ≤ (γdT )γ . Rearranging, we obtain the condition

T ≥ 21/γγd
(n− d

d

) 1
γ
( d
βn

) 1
(1−α2)γ2 , (3.141)

which satisfies our initial claim. Combining (3.126) and (3.141), we get

T ≥ γdmax

{
2

1
α2
H2(max{α2,

1
2
})
( d
βn

) 1
α2γ , 21/γ

(n− d
d

) 1
γ
( d
βn

) 1
(1−α2)γ2

}
. (3.142)

We now provide a bound on the total error probability. Setting t = Gmax/2 in our inequality

in (3.115), we get

P
[
G > E[G] +

Gmax

2

]
≤ exp

( −1
2

(
Gmax

2

)2
E[G] + 1

3

(
Gmax

2

)). (3.143)

Applying that fact that E[G] ≤ Gmax/2, we get

P[G > Gmax] ≤ exp
(
− 3

16
Gmax

)
= exp

(
− 3d

16

(
βn
d

) 1
(1−α2)γ

)
, (3.144)

which approaches 0 as long is βn is a slowly decaying function (e.g., log factors only). By

combining all the error probabilities in (3.144), (3.124), (3.137), and Lemma 3.2.2, we have

P[total error] ≤ P[G > Gmax] + P
[ d⋃
i=1

{Ci ≥ α2γ}
]

+ P[∃ defective item not in D̂]

+ P
(
δ−n /∈ [δn − (γd)−1/3, δn + (γd)−1/3]

)
(3.145)

(a)

≤ exp
(
− 3d

16

(
βn
d

) 1
(1−α2)γ

)
+ d2γH2(max{α2,

1
2
})
(γd
T

)α2γ
(1 + o(1))

+ d
(G
d

)(1−α2)γ
(1 + o(1)) + 2 exp(−2(γd)1/3) (3.146)

(b)

≤ exp
(
− 3d

16

(
βn
d

) 1
(1−α2)γ

)
+ 2βn(1 + o(1)) + 2 exp(−2(γd)1/3), (3.147)

where (a) is because we apply Lemma 3.2.2 for the last term, and (b) is because we have

d2γH2(max{α2,
1
2
})(γd

T

)α2γ(1 + o(1)) ≤ βn(1 + o(1)) from (3.125) and d
(
G
d

)(1−α2)γ
(1 + o(1)) ≤

βn(1 + o(1)) from (3.138).
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Chapter 4

Conclusion and Future Work

In Chapter 1, we motivated and set up both the group testing problem and its sparse counter-

part.

In Chapter 2, motivated by the fact that relatively little is known in the sparse adaptive

setting, we studied the sparse adaptive setting, and provided information theoretic lower bounds

for γ-divisible items, and algorithms for both γ-divisible items and ρ-sized tests.

In Chapter 3, we considered the non-adaptive setting. We first provided a generalization

for both γ-divisible items constraint and ρ-sized tests constraint, which we used to provided

information theoretic lower bounds for both setting. Furthermore, we improved the upper

bound on the number of tests for γ-divisible items by considering a more refined algorithm, and

analyzing it.

An interesting extension of this work would be to strengthen the converse in Theorem 3.3.2

by extending the arguments presented in [7] to the sparse setting in order to remove the need

for a specific test design, and to obtain an error probability that approaches 1 as n → ∞

for test numbers below the converse bound. Another interesting extension to the γ-divisible

items constraint is to consider the case where different items have a different divisibility γi.

This results in the general constraint: the number of ones in the test matrix is less than or

equal to
∑n

i=1 γi. This setup might lead to a more general information theoretic converse and

algorithm(s).
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