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Motivation

• Begin in 1943, where soldiers were tested for syphilis by drawing blood

• Robert Dorfman’s key insight: reduce number of tests by pooling

• Central problem:

I How many tests are required to accurately discover the infected soldiers?

I How can it be achieved?
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Applications

• Medical testing: COVID-19, by pooling Ribonucleic acid (RNA) samples

[Yelin et al., 2020]

• Some other applications:

I Biology

I Communications

I Data science
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Group Testing Setup

• In this talk:

I n items labelled {1, . . . , n} that produces binary outcomes when tested

I Defective set D ⊂ {1, . . . , n}, where d = |D| ∈ o(n)

I Combinatorial prior: Defective set D ∼ Uniform
(
n
d

)
(i.e, d out of n items with

uniform prior)

I Noiseless testing: negative outcome ⇒ all items in pool are non-defective;

positive outcome ⇒ at least one item in pool is defective

I Distinction between adaptive and non-adaptive testing
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Recovery Criteria

• Error probability (exact recovery)

Pe = P(D̂ 6= D)

• We study conditions on number of tests T for Pe → 0 as n→∞
I Information theoretic lower bound

I Minimum number of tests T for Pe → 0

I Upper bound from algorithm

I Maximum number of tests T our algorithm needs for Pe → 0
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Sparse Group Testing

Testing procedure is subjected to one of the following:

• Items are finitely divisible and thus may participate in at most γ tests

• Tests are size-constrained and thus contain no more than ρ items per test

Example:

• Divisibility constraint: finite amount of blood per soldier

• Size constraint: limitations on volume capacity of the machine
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Sparse Group Testing

• Previous work in literature shows that γ ∈ Θ(log n) and ρ ∈ Θ
(
n
d

)
are

required to attain the lower bound for the unconstrained setting

• We are interested in:

I Divisibility constraint: γ ∈ o(log n)

I Size constraint: ρ ∈ o
(
n
d

)
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Previous Work on Non-Adaptive Setting

For some error probability Pe = P(D̂ 6= D) ≤ ε:

Constraint type Scaling regime Tests required

γ-divisible items
d ∈ Θ(nθ), θ < 1

γ ∈ o(log n)

T > γd
(
n
d

)(1−5ε)/γ
T <

⌈
γd
(
n
ε

)1/γ⌉
ρ-sized tests

d ∈ Θ(nθ), θ < 1

ρ ∈ Θ
(
(n/d)β

)
, β < 1

ε = n−ζ , ζ > 0

T >
(
1−6ε
1−β

)
n
ρ

T <
⌈

1+ζ
(1−α)(1−β)

⌉⌈
n
ρ

⌉
Table: Previous results (non-adaptive setting)
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Outline

1 Adaptive Setting for γ-Divisible Items

2 Non-Adaptive Setting for γ-Divisible Items

3 Conclusion
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1 Adaptive Setting for γ-Divisible Items
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Lower Bound Result

Adaptive setting: test pools are designed sequentially, and each one can depend

on previous test outcomes.

Theorem: If d ∈ o(n), γ ∈ o(log n), any non-adaptive or adaptive group testing

algorithm that tests each item at most γ times and has a probability of error of at

most ε requires at least e−(1+o(1))γd
(
n
d

)1/γ
tests.

Improvements: We have strengthened previous lower bound by

• Improving dependence on ε, and

• Extending its validity to the adaptive setting.
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Lower Bound Result Interpretation

Theorem: We require at least e−(1+o(1))γd
(
n
d

)1/γ
tests.

Interpretation:

• If every test reveals 1 bit of entropy, we need log
(
n
d

)
≈ d log

(
n
d

)
tests

• Since we require much more tests, our constraint results in tests to be less

informative
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Upper Bound Result and Algorithm

Claim: If d ∈ o(n), γ ∈ o(log n), then there exists an adaptive group testing

algorithm that tests each item at most γ times achieving Pe = 0 using at most

T = γd( n
d )1/γ tests.

Improvements:

• Improved previous bound:
(
n
ε

)1/γ ⇒ (
n
d

)1/γ
• Matches the lower bound T ≥ e−(1+o(1))γd

(
n
d

)1/γ
up to a constant factor of

e−(1+o(1))

Key idea: Can we partition the items into equal groups of ideal sizes?
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Adaptive Algorithm

• Group sizes: M → M1− 1
γ−1 → M1− 2

γ−1 → · · · → 1

I n/M splits from stage 0 to stage 1

I M1/(γ−1) splits between any two subsequent stages
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Adaptive Algorithm Analysis

• From stage 1 to stage 2: we made n/M tests
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Adaptive Algorithm Analysis

• From stage 2 onward, between any two stages (total of γ − 1): we made

dM
1

γ−1 tests

• This gives us T ≤ n
M + (γ − 1)dM

1
γ−1 .

• Optimizing the upper bound w.r.t. M and substituting back into the upper

bound, we get our result
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2 Non-Adaptive Setting for γ-Divisible Items
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Non-adaptive Setting

• Tests can be designed in advance

• Goal: given test matrix X and outcomes y, estimate D̂

• Narrower regimes:

I d ∈ Θ(nθ) for some sparsity parameter θ ∈ (0, 1)

I γ ∈ Θ
(
(log n)c

)
for some constant c ∈ [0, 1)
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Lower Bound Result

Theorem: If d ∈ Θ(nθ) and γ ∈ Θ
(
(log n)c

)
, then any non-adaptive algorithm

that tests each item at most γ times with tests T ≤ γd1/γ(d − 1)(1 + o(1)), has

Pe bounded away from zero.

Interpretation:

• Larger number of tests are required for some θ

• We compare our result T ∈ Ω
(
γd · d1/γ

)
with previous result

T ∈ Ω
(
γd
(
n
d

)1/γ)
• To make the difference visible, we use the variable η, where T = γd

((
n
d

) 1
γ
) 1

η

• Smaller η ⇒ larger T
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Lower Bound Result

Comparison: T ∈ Ω
(
γd · d1/γ

)
[ours] vs. T ∈ Ω

(
γd
(
n
d

)1/γ)
[previous]
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Ours
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Lower Bound Result

Comparison: T ∈ Ω
(
γd · d1/γ

)
[ours] vs. T ∈ Ω
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Definite Defectives (DD) Algorithm

Some useful observations:

• Any item in a negative test is definitely non-defective (DND)

• All other items are considered (initially) as possibly defective (PD)

• If a test contains only one item from PD, then it is definitely defective (DD)

Algorithm: Declare the set DD to be the positive and the rest negative

Claim: If d ∈ Θ(nθ), γ ∈ Θ
(
(log n)c

)
, constant α2 ∈ (0, 1), and a decaying

function βn, then we need at most

T = γd max

{
2

1
α2

H2(max{α2,
1
2})
( d

βn

) 1
α2γ

, 21/γ
(n − d

d

) 1
γ
( d

βn

) 1
(1−α2)γ

2

}
,

to recover D with vanishing error probability.
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Definitions

Two Definitions:

• We say that item i is masked by set L if every test that includes i , also

includes ≥ 1 item(s) from L
• Number of collisions between item i and set L refers to the #tests that

include i , and also include ≥ 1 item(s) from L
Example:
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Very Brief Analysis – Main Ideas

Observation: for DD = D, every defective item i must not be masked by

PD \ {i}.
Idea: split PD \ {i} into two sets D \ {i} (defective items) & PD \ D
(non-defective items) and consider two error events:

• Event 1: #collisions between i ∈ D and D \ {i} is “close to γ”

Nelvin Tan (NUS) Sparse Group Testing: April 12, 2020 27 / 35



Very Brief Analysis – Main Ideas

Observation: for DD = D, every defective item i must not be masked by

PD \ {i}.
Idea: split PD \ {i} into two sets D \ {i} (defective items) & PD \ D
(non-defective items) and consider two error events:

• Event 1: #collisions between i ∈ D and D \ {i} is “close to γ”

Nelvin Tan (NUS) Sparse Group Testing: April 12, 2020 27 / 35



Very Brief Analysis – Main Ideas

Observation: for DD = D, every defective item i must not be masked by

PD \ {i}.
Idea: split PD \ {i} into two sets D \ {i} (defective items) & PD \ D
(non-defective items) and consider two error events:

• Event 1: #collisions between i ∈ D and D \ {i} is “close to γ”

Nelvin Tan (NUS) Sparse Group Testing: April 12, 2020 27 / 35



Very Brief Analysis – Main Ideas

• Event 2|¬Event1: every test that includes i as the only defective item,

contains ≥ 1 item from PD \ D

I For each error event, upper bound error probability by βn

I Obtain bound on T from both events ⇒ Take the max
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Interpretation of Results

Result:

T = γd max

{
2

1
α2

H2(max{α2,
1
2})
( d

βn

) 1
α2γ

, 21/γ
(n − d

d

) 1
γ
( d

βn

) 1
(1−α2)γ

2

}
We can simplify the result under two scaling regimes where βn scales

logarithmically in n.

• Large γ: γ ∈ Θ
(
(log n)c

)
for some c ∈ (0, 1)

I Assume that α2 ≈ 1

I T = Ω̃
(
γd max{nθ, n1−θ}1/γ

)
• Constant γ: γ ∈ O(1)

I T = Ω̃
(
γd max

{
n

θ
α2γ , n

1
α2γ

+ θ
(1−α2)γ

2)
}1/γ)

I We can numerically optimize α2 to obtain a plot
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Interpretation of Results

• Large γ: T = Ω̃
(
γd max{nθ, n1−θ}1/γ

)
vs. T = Ω̃

(
γdn1/γ

)
• Constant γ: T = Ω̃

(
γd max

{
n

θ
α2γ , n

1
α2γ

+ θ
(1−α2)γ

2)
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(
γdn1/γ

)
Large γ: γ ∈ Θ

(
(log n)c

)
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3 Conclusion
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Recap

We focused on:

• γ-divisible items constraints

• Both the adaptive and non-adaptive settings

Returning to the central problem:

• How many tests are required? Provided lower bounds

• How can it be achieved? Provided algorithms and their upper bounds
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Overview of Results
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