Bounds and Algorithms

Nelvin Tan

NUS

April 12, 2020

Nelvin Tan (NUS)

Motivation

- Begin in 1943, where soldiers were tested for syphilis by drawing blood
- Robert Dorfman's key insight: reduce number of tests by pooling
- Central problem:
 - How many tests are required to accurately discover the infected soldiers?
 - How can it be achieved?

Motivation

- Begin in 1943, where soldiers were tested for syphilis by drawing blood
- Robert Dorfman's key insight: reduce number of tests by pooling
- Central problem:
 - How many tests are required to accurately discover the infected soldiers?
 - How can it be achieved?

Applications

• Medical testing: COVID-19, by pooling Ribonucleic acid (RNA) samples [Yelin et al., 2020]

- Some other applications:
 - Biology
 - Communications
 - Data science

Applications

• Medical testing: COVID-19, by pooling Ribonucleic acid (RNA) samples [Yelin et al., 2020]

- Some other applications:
 - Biology
 - Communications
 - Data science

Group Testing Setup

In this talk:

- *n* items labelled $\{1, \ldots, n\}$ that produces binary outcomes when tested
- Defective set $\mathcal{D} \subset \{1, \dots, n\}$, where $d = |\mathcal{D}| \in o(n)$
- Combinatorial prior: Defective set D ~ Uniform ⁿ_d (i.e, d out of n items with uniform prior)
- Noiseless testing: negative outcome ⇒ all items in pool are non-defective; positive outcome ⇒ at least one item in pool is defective
- Distinction between adaptive and non-adaptive testing

Recovery Criteria

• Error probability (exact recovery)

$$\mathsf{P}_{e} = \mathbb{P}(\widehat{\mathcal{D}}
eq \mathcal{D})$$

- We study conditions on number of tests T for $P_e
 ightarrow 0$ as $n
 ightarrow \infty$
 - Information theoretic lower bound
 - Minimum number of tests T for $P_e \rightarrow 0$
 - Upper bound from algorithm
 - Maximum number of tests T our algorithm needs for $P_e
 ightarrow 0$

Testing procedure is subjected to one of the following:

- Items are finitely divisible and thus may participate in at most γ tests
- Tests are size-constrained and thus contain no more than ρ items per test comple:
- Divisibility constraint: finite amount of blood per soldier
- Size constraint: limitations on volume capacity of the machine

• • • • • • • • • • •

Testing procedure is subjected to one of the following:

- Items are finitely divisible and thus may participate in at most γ tests
- Tests are size-constrained and thus contain no more than ρ items per test

Example:

- Divisibility constraint: finite amount of blood per soldier
- Size constraint: limitations on volume capacity of the machine

< //2 ▶ < ∃ ▶

- Previous work in literature shows that γ ∈ Θ(log n) and ρ ∈ Θ(ⁿ/_d) are required to attain the lower bound for the unconstrained setting
- We are interested in:
 - Divisibility constraint: $\gamma \in o(\log n)$
 - Size constraint: $\rho \in o\left(\frac{n}{d}\right)$

- Previous work in literature shows that γ ∈ Θ(log n) and ρ ∈ Θ(ⁿ/_d) are required to attain the lower bound for the unconstrained setting
- We are interested in:
 - Divisibility constraint: $\gamma \in o(\log n)$
 - Size constraint: $\rho \in o\left(\frac{n}{d}\right)$

Previous Work on Non-Adaptive Setting

For some error probability $P_e = \mathbb{P}(\widehat{\mathcal{D}} \neq \mathcal{D}) \leq \epsilon$:

Constraint type	Scaling regime	Tests required	
a divisible items	$d\in \Theta(n^ heta), heta < 1$	$T > \gamma d \left(rac{n}{d} ight)^{(1-5\epsilon)/\gamma}$	
	$\gamma \in \textit{o}(\log\textit{n})$	$T < \left\lceil \gamma d \left(rac{n}{\epsilon} ight)^{1/\gamma} ight ceil$	
	$d\in \Theta(n^\theta), \theta < 1$	$T \sim (1-6\epsilon) n$	
ho-sized tests	$ ho \in \Theta((n/d)^{eta}), eta < 1$	$T > \left(\frac{1-\beta}{1-\beta}\right) \frac{1}{\rho}$ $T > \left[\frac{1+\zeta}{1-\beta}\right] \left[\frac{n}{2}\right]$	
	$\epsilon = n^{-\zeta}, \zeta > 0$	$r < \overline{(1-\alpha)(1-\beta)} \overline{\rho} $	

Table: Previous results (non-adaptive setting)

Previous Work on Non-Adaptive Setting

For some error probability $P_e = \mathbb{P}(\widehat{\mathcal{D}} \neq \mathcal{D}) \leq \epsilon$:

Constraint type Scaling regime		Tests required
γ -divisible items	$d\in \Theta(n^ heta), heta < 1$	$T > \gamma d\left(\frac{n}{d}\right)^{(1-5\epsilon)/\gamma}$
	$\gamma \in \textit{o}(\log\textit{n})$	$T < \left\lceil \gamma d \left(rac{n}{\epsilon} ight)^{1/\gamma} ight ceil$
	$d\in \Theta(n^ heta), heta < 1$	$T \setminus (1-6\epsilon) n$
ho-sized tests	$ ho \in \Theta((n/d)^{eta}), eta < 1$	$T \sim \left[\frac{1+\zeta}{1-\beta} \right] \left[\frac{n}{\rho} \right]$
	$\epsilon = n^{-\zeta}, \zeta > 0$	$V > \overline{(1-\alpha)(1-\beta)} \overline{\rho} $

Table: Previous results (non-adaptive setting)

メロト メタト メヨト メヨト

2 Non-Adaptive Setting for γ -Divisible Items

3 Conclusion

Nelvin Tan (NUS)

April 12, 2020 10 / 35

$_{\rm 0}$ Adaptive Setting for $\gamma\text{-Divisible Items}$

メロト メタト メヨト メヨト

Adaptive setting: test pools are designed sequentially, and each one can depend on previous test outcomes.

Theorem: If $d \in o(n)$, $\gamma \in o(\log n)$, any non-adaptive or adaptive group testing algorithm that tests each item at most γ times and has a probability of error of at most ϵ requires at least $e^{-(1+o(1))}\gamma d(\frac{n}{d})^{1/\gamma}$ tests.

• Improving dependence on ϵ , and

Extending its validity to the adaptive setting.

< □ > < 同 > < 回 > < 回 >

Adaptive setting: test pools are designed sequentially, and each one can depend on previous test outcomes.

Theorem: If $d \in o(n)$, $\gamma \in o(\log n)$, any non-adaptive or adaptive group testing algorithm that tests each item at most γ times and has a probability of error of at most ϵ requires at least $e^{-(1+o(1))}\gamma d(\frac{n}{d})^{1/\gamma}$ tests.

Improvements: We have strengthened previous lower bound by

• Improving dependence on ϵ , and

Extending its validity to the adaptive setting.

Adaptive setting: test pools are designed sequentially, and each one can depend on previous test outcomes.

Theorem: If $d \in o(n)$, $\gamma \in o(\log n)$, any non-adaptive or adaptive group testing algorithm that tests each item at most γ times and has a probability of error of at most ϵ requires at least $e^{-(1+o(1))}\gamma d(\frac{n}{d})^{1/\gamma}$ tests.

Improvements: We have strengthened previous lower bound by

- Improving dependence on ϵ , and
- Extending its validity to the adaptive setting.

Lower Bound Result Interpretation

Theorem: We require at least $e^{-(1+o(1))}\gamma d(\frac{n}{d})^{1/\gamma}$ tests. Interpretation:

- If every test reveals 1 bit of entropy, we need $\log {n \choose d} \approx d \log \left(\frac{n}{d}\right)$ tests
- Since we require much more tests, our constraint results in tests to be less informative

Lower Bound Result Interpretation

Theorem: We require at least $e^{-(1+o(1))}\gamma d(\frac{n}{d})^{1/\gamma}$ tests. **Interpretation:**

- If every test reveals 1 bit of entropy, we need $\log \binom{n}{d} \approx d \log \left(\frac{n}{d}\right)$ tests
- Since we require much more tests, our constraint results in tests to be less informative

Upper Bound Result and Algorithm

Claim: If $d \in o(n)$, $\gamma \in o(\log n)$, then there exists an adaptive group testing algorithm that tests each item at most γ times achieving $P_e = 0$ using at most $T = \gamma d(\frac{n}{d})^{1/\gamma}$ tests.

Improvements:

- Improved previous bound: $\left(\frac{n}{\epsilon}\right)^{1/\gamma} \Rightarrow \left(\frac{n}{d}\right)^{1/\gamma}$
- Matches the lower bound $T \ge e^{-(1+o(1))}\gamma d \left(rac{n}{d}\right)^{1/\gamma}$ up to a constant factor of $e^{-(1+o(1))}$

Key idea: Can we partition the items into equal groups of ideal sizes?

イロト イヨト イヨト

Upper Bound Result and Algorithm

Claim: If $d \in o(n)$, $\gamma \in o(\log n)$, then there exists an adaptive group testing algorithm that tests each item at most γ times achieving $P_e = 0$ using at most $T = \gamma d(\frac{n}{d})^{1/\gamma}$ tests.

Improvements:

- Improved previous bound: $\left(\frac{n}{\epsilon}\right)^{1/\gamma} \Rightarrow \left(\frac{n}{d}\right)^{1/\gamma}$
- Matches the lower bound $T \ge e^{-(1+o(1))}\gamma d\left(\frac{n}{d}\right)^{1/\gamma}$ up to a constant factor of $e^{-(1+o(1))}$

Key idea: Can we partition the items into equal groups of ideal sizes?

イロト 不得 トイヨト イヨト

Upper Bound Result and Algorithm

Claim: If $d \in o(n)$, $\gamma \in o(\log n)$, then there exists an adaptive group testing algorithm that tests each item at most γ times achieving $P_e = 0$ using at most $T = \gamma d(\frac{n}{d})^{1/\gamma}$ tests.

Improvements:

- Improved previous bound: $\left(\frac{n}{\epsilon}\right)^{1/\gamma} \Rightarrow \left(\frac{n}{d}\right)^{1/\gamma}$
- Matches the lower bound $T \ge e^{-(1+o(1))}\gamma d\left(\frac{n}{d}\right)^{1/\gamma}$ up to a constant factor of $e^{-(1+o(1))}$

Key idea: Can we partition the items into equal groups of ideal sizes?

イロト 不得 トイヨト イヨト 二日

Adaptive Algorithm

• Group sizes: $M \to M^{1-\frac{1}{\gamma-1}} \to M^{1-\frac{2}{\gamma-1}} \to \cdots \to 1$

- n/M splits from stage 0 to stage 1
- $M^{1/(\gamma-1)}$ splits between any two subsequent stages

Adaptive Algorithm

• Group sizes: $M \to M^{1-\frac{1}{\gamma-1}} \to M^{1-\frac{2}{\gamma-1}} \to \cdots \to 1$

- n/M splits from stage 0 to stage 1
- $M^{1/(\gamma-1)}$ splits between any two subsequent stages

Adaptive Algorithm Analysis

• From stage 1 to stage 2: we made n/M tests

Adaptive Algorithm Analysis

- From stage 2 onward, between any two stages (total of $\gamma 1$): we made $dM^{rac{1}{\gamma-1}}$ tests
- This gives us $T \leq \frac{n}{M} + (\gamma 1) dM^{\frac{1}{\gamma 1}}$.
- Optimizing the upper bound w.r.t. *M* and substituting back into the upper bound, we get our result

$_{\it O}$ Non-Adaptive Setting for $\gamma\text{-Divisible Items}$

Non-adaptive Setting

- Tests can be designed in advance
- Goal: given test matrix X and outcomes \mathbf{y} , estimate $\widehat{\mathcal{D}}$

Narrower regimes:

- $d \in \Theta(n^{ heta})$ for some sparsity parameter $heta \in (0,1)$
- $\gamma \in \Theta((\log n)^c)$ for some constant $c \in [0,1)$

NI-C	by in the	2.0	(NH	
1110		dll		50

Non-adaptive Setting

- Tests can be designed in advance
- Goal: given test matrix X and outcomes **y**, estimate $\widehat{\mathcal{D}}$

- Narrower regimes:
 - $d \in \Theta(n^{\theta})$ for some sparsity parameter $\theta \in (0, 1)$
 - $\gamma \in \Theta((\log n)^c)$ for some constant $c \in [0, 1)$

Theorem: If $d \in \Theta(n^{\theta})$ and $\gamma \in \Theta((\log n)^{c})$, then any non-adaptive algorithm that tests each item at most γ times with tests $T \leq \gamma d^{1/\gamma}(d-1)(1+o(1))$, has P_e bounded away from zero.

Interpretation:

- Larger number of tests are required for some heta
- We compare our result $T \in \Omega(\gamma d \cdot d^{1/\gamma})$ with previous result $T \in \Omega(\gamma d \left(\frac{n}{d}\right)^{1/\gamma})$
- To make the difference visible, we use the variable η , where $T = \gamma d((rac{a}{d})^{rac{\gamma}{2}})^{rac{\gamma}{2}}$
- Smaller $\eta \Rightarrow$ larger T

イロト イヨト イヨト

Theorem: If $d \in \Theta(n^{\theta})$ and $\gamma \in \Theta((\log n)^{c})$, then any non-adaptive algorithm that tests each item at most γ times with tests $T \leq \gamma d^{1/\gamma}(d-1)(1+o(1))$, has P_{e} bounded away from zero.

Interpretation:

- Larger number of tests are required for some $\boldsymbol{\theta}$
- We compare our result $T \in \Omega(\gamma d \cdot d^{1/\gamma})$ with previous result $T \in \Omega(\gamma d(\frac{n}{d})^{1/\gamma})$
- To make the difference visible, we use the variable η , where $T = \gamma d((\frac{n}{d})^{\frac{1}{\gamma}})^{\frac{1}{\eta}}$
- Smaller $\eta \Rightarrow \text{larger } T$

Comparison: $T \in \Omega(\gamma d \cdot d^{1/\gamma})$ [ours] vs. $T \in \Omega(\gamma d (\frac{n}{d})^{1/\gamma})$ [previous]

Comparison: $T \in \Omega(\gamma d \cdot d^{1/\gamma})$ [ours] vs. $T \in \Omega(\gamma d (\frac{n}{d})^{1/\gamma})$ [previous]

Comparison: $T \in \Omega(\gamma d \cdot d^{1/\gamma})$ [ours] vs. $T \in \Omega(\gamma d (\frac{n}{d})^{1/\gamma})$ [previous]

Definite Defectives (DD) Algorithm

Some useful observations:

- Any item in a negative test is definitely non-defective (\mathcal{DND})
- All other items are considered (initially) as possibly defective (\mathcal{PD})
- If a test contains only one item from \mathcal{PD} , then it is definitely defective (\mathcal{DD})

Algorithm: Declare the set DD to be the positive and the rest negative **Claim:** If $d \in \Theta(n^{\theta})$, $\gamma \in \Theta((\log n)^{c})$, constant $\alpha_{2} \in (0, 1)$, and a decaying function β_{n} , then we need at most

$$T = \gamma d \max\left\{2^{\frac{1}{\alpha_2}H_2(\max\{\alpha_2,\frac{1}{2}\})} \left(\frac{d}{\beta_n}\right)^{\frac{1}{\alpha_2\gamma}}, 2^{1/\gamma} \left(\frac{n-d}{d}\right)^{\frac{1}{\gamma}} \left(\frac{d}{\beta_n}\right)^{\frac{1}{(1-\alpha_2)\gamma^2}}\right\},$$

to recover \mathcal{D} with vanishing error probability.

Definite Defectives (DD) Algorithm

Some useful observations:

- Any item in a negative test is definitely non-defective (\mathcal{DND})
- All other items are considered (initially) as possibly defective (\mathcal{PD})
- If a test contains only one item from \mathcal{PD} , then it is definitely defective (\mathcal{DD})

Algorithm: Declare the set \mathcal{DD} to be the positive and the rest negative **Claim:** If $d \in \Theta(n^{\theta})$, $\gamma \in \Theta((\log n)^{c})$, constant $\alpha_{2} \in (0, 1)$, and a decaying function β_{n} , then we need at most

$$T = \gamma d \max\left\{2^{\frac{1}{\alpha_2}H_2(\max\{\alpha_2, \frac{1}{2}\})} \left(\frac{d}{\beta_n}\right)^{\frac{1}{\alpha_2\gamma}}, 2^{1/\gamma} \left(\frac{n-d}{d}\right)^{\frac{1}{\gamma}} \left(\frac{d}{\beta_n}\right)^{\frac{1}{(1-\alpha_2)\gamma^2}}\right\},$$

to recover \mathcal{D} with vanishing error probability.

Definite Defectives (DD) Algorithm

Some useful observations:

- Any item in a negative test is definitely non-defective (\mathcal{DND})
- All other items are considered (initially) as possibly defective (\mathcal{PD})
- If a test contains only one item from \mathcal{PD} , then it is definitely defective (\mathcal{DD})

Algorithm: Declare the set DD to be the positive and the rest negative **Claim:** If $d \in \Theta(n^{\theta})$, $\gamma \in \Theta((\log n)^{c})$, constant $\alpha_{2} \in (0, 1)$, and a decaying function β_{n} , then we need at most

$$T = \gamma d \max\left\{2^{\frac{1}{\alpha_2}H_2(\max\{\alpha_2,\frac{1}{2}\})} \left(\frac{d}{\beta_n}\right)^{\frac{1}{\alpha_2\gamma}}, 2^{1/\gamma} \left(\frac{n-d}{d}\right)^{\frac{1}{\gamma}} \left(\frac{d}{\beta_n}\right)^{\frac{1}{(1-\alpha_2)\gamma^2}}\right\},$$

to recover \mathcal{D} with vanishing error probability.

Definitions

Two Definitions:

- We say that item *i* is masked by set *L* if every test that includes *i*, also includes ≥ 1 item(s) from *L*
- Number of collisions between item i and set L refers to the #tests that include i, and also include ≥ 1 item(s) from L

Example:

Observation: for DD = D, every defective item *i* must not be masked by $PD \setminus \{i\}$. **Idea:** split $PD \setminus \{i\}$ into two sets $D \setminus \{i\}$ (defective items) & $PD \setminus D$ (non-defective items) and consider two error events:

• Event 1: #collisions between $i \in D$ and $D \setminus \{i\}$ is "close to γ "

Observation: for DD = D, every defective item *i* must not be masked by $PD \setminus \{i\}$. **Idea:** split $PD \setminus \{i\}$ into two sets $D \setminus \{i\}$ (defective items) & $PD \setminus D$ (non-defective items) and consider two error events:

• Event 1: #collisions between $i \in D$ and $D \setminus \{i\}$ is "close to γ "

Observation: for DD = D, every defective item *i* must not be masked by $PD \setminus \{i\}$.

Idea: split $\mathcal{PD} \setminus \{i\}$ into two sets $\mathcal{D} \setminus \{i\}$ (defective items) & $\mathcal{PD} \setminus \mathcal{D}$ (non-defective items) and consider two error events:

• Event 1: #collisions between $i \in D$ and $D \setminus \{i\}$ is "close to γ "

Event 2|¬Event1: every test that includes *i* as the only defective item, contains ≥ 1 item from PD \ D

- For each error event, upper bound error probability by β_n
- Obtain bound on T from both events \Rightarrow Take the max

Event 2|¬Event1: every test that includes *i* as the only defective item, contains ≥ 1 item from PD \ D

- For each error event, upper bound error probability by β_n
- Obtain bound on T from both events \Rightarrow Take the max

Result:

$$T = \gamma d \max\left\{2^{\frac{1}{\alpha_2}H_2(\max\{\alpha_2,\frac{1}{2}\})} \left(\frac{d}{\beta_n}\right)^{\frac{1}{\alpha_2\gamma}}, 2^{1/\gamma} \left(\frac{n-d}{d}\right)^{\frac{1}{\gamma}} \left(\frac{d}{\beta_n}\right)^{\frac{1}{(1-\alpha_2)\gamma^2}}\right\}$$

We can simplify the result under two scaling regimes where β_n scales logarithmically in n.

- Large γ : $\gamma \in \Theta((\log n)^c)$ for some $c \in (0, 1)$
 - Assume that $\alpha_2 \approx 1$
 - $\blacktriangleright T = \widetilde{\Omega} \left(\gamma d \max\{n^{\theta}, n^{1-\theta}\}^{1/\gamma} \right)$
- Constant γ : $\gamma \in O(1)$
 - $T = \widetilde{\Omega}\left(\gamma d \max\left\{n^{\frac{\theta}{\alpha_2 \gamma}}, n^{\frac{1}{\alpha_2 \gamma} + \frac{\theta}{(1-\alpha_2)\gamma^2}}\right\}^{1/\gamma}\right)$
 - We can numerically optimize α_2 to obtain a plot

イロン イ団 とく ヨン イヨン

Result:

$$T = \gamma d \max\left\{2^{\frac{1}{\alpha_2}H_2(\max\{\alpha_2,\frac{1}{2}\})} \left(\frac{d}{\beta_n}\right)^{\frac{1}{\alpha_2\gamma}}, 2^{1/\gamma} \left(\frac{n-d}{d}\right)^{\frac{1}{\gamma}} \left(\frac{d}{\beta_n}\right)^{\frac{1}{(1-\alpha_2)\gamma^2}}\right\}$$

We can simplify the result under two scaling regimes where β_n scales logarithmically in n.

- Large γ : $\gamma \in \Theta((\log n)^c)$ for some $c \in (0, 1)$
 - Assume that $\alpha_2 \approx 1$
 - $T = \widetilde{\Omega} \left(\gamma d \max\{n^{\theta}, n^{1-\theta}\}^{1/\gamma} \right)$
- Constant γ : $\gamma \in O(1)$
 - $T = \widetilde{\Omega} \left(\gamma d \max \left\{ n^{\frac{\theta}{\alpha_2 \gamma}}, n^{\frac{1}{\alpha_2 \gamma} + \frac{\theta}{(1 \alpha_2) \gamma^2}} \right\}^{1/\gamma} \right)$
 - We can numerically optimize α_2 to obtain a plot

• Large γ : $T = \widetilde{\Omega}(\gamma d \max\{n^{\theta}, n^{1-\theta}\}^{1/\gamma})$ vs. $T = \widetilde{\Omega}(\gamma d n^{1/\gamma})$ • Constant γ : $T = \widetilde{\Omega}(\gamma d \max\{n^{\frac{\theta}{\alpha_2\gamma}}, n^{\frac{1}{\alpha_2\gamma} + \frac{\theta}{(1-\alpha_2)\gamma^2}}\}^{1/\gamma})$ vs. $T = \widetilde{\Omega}(\gamma d n^{1/\gamma})$ Large γ : $\gamma \in \Theta((\log n)^c)$ <u>Constant γ : $\gamma \in O(1)$ </u>

• Large γ : $T = \widetilde{\Omega}(\gamma d \max\{n^{\theta}, n^{1-\theta}\}^{1/\gamma})$ vs. $T = \widetilde{\Omega}(\gamma d n^{1/\gamma})$ • Constant γ : $T = \widetilde{\Omega}(\gamma d \max\{n^{\frac{\theta}{\alpha_2\gamma}}, n^{\frac{1}{\alpha_2\gamma} + \frac{\theta}{(1-\alpha_2)\gamma^2}}\}^{1/\gamma})$ vs. $T = \widetilde{\Omega}(\gamma d n^{1/\gamma})$ Large γ : $\gamma \in \Theta((\log n)^c)$ <u>Constant γ : $\gamma \in O(1)$ </u>

• Large γ : $T = \widetilde{\Omega}(\gamma d \max\{n^{\theta}, n^{1-\theta}\}^{1/\gamma})$ vs. $T = \widetilde{\Omega}(\gamma d n^{1/\gamma})$ • Constant γ : $T = \widetilde{\Omega}(\gamma d \max\{n^{\frac{\theta}{\alpha_2\gamma}}, n^{\frac{1}{\alpha_2\gamma} + \frac{\theta}{(1-\alpha_2)\gamma^2}}\}^{1/\gamma})$ vs. $T = \widetilde{\Omega}(\gamma d n^{1/\gamma})$ Large γ : $\gamma \in \Theta((\log n)^c)$ Constant γ : $\gamma \in O(1)$

Conclusion

Nelvin Tan (NUS)

로 ▶ 《 문 ▶ 문 ∽ ९... April 12, 2020 33 / 35

メロト メロト メヨト メヨト

We focused on:

- γ -divisible items constraints
- Both the adaptive and non-adaptive settings

Returning to the **central problem**:

- How many tests are required? Provided lower bounds
- How can it be achieved? Provided algorithms and their upper bounds

We focused on:

- γ -divisible items constraints
- Both the adaptive and non-adaptive settings

Returning to the **central problem**:

- How many tests are required? Provided lower bounds
- How can it be achieved? Provided algorithms and their upper bounds

Overview of Results

	Scaling regime	Tests required
adaptive	$egin{aligned} & d \in o(n) \ & \gamma \in o(\log n) \ & \gamma d o \infty \end{aligned}$	$egin{split} \mathcal{T} > e^{-(1+o(1))} \gamma dig(rac{n}{d}ig)^{1/\gamma} \ \mathcal{T} < \gamma dig(rac{n}{d}ig)^{1/\gamma} \end{split}$
non-adaptive	$d \in \Theta(n^{ heta}), heta < 1$ $\gamma \in \Theta((\log n)^c), c < 1$	$T > \gamma d^{\frac{1}{\gamma}} (d-1)(1+o(1))$ $T < \gamma d \max\left\{2^{\frac{1}{\alpha_2}H_2(\max\{\alpha_2,\frac{1}{2}\})} \left(\frac{d}{\beta_n}\right)^{\frac{1}{\alpha_2\gamma}}, \\ 2^{1/\gamma} \left(\frac{n-d}{d}\right)^{\frac{1}{\gamma}} \left(\frac{d}{\beta_n}\right)^{\frac{1}{(1-\alpha_2)\gamma^2}}\right\}$

Table: Our results

メロト メタト メヨト メヨト

Overview of Results

	Scaling regime	Tests required
adaptive	$egin{aligned} & d \in o(n) \ & \gamma \in o(\log n) \ & \gamma d o \infty \end{aligned}$	$egin{split} \mathcal{T} > e^{-(1+o(1))} \gamma dig(rac{n}{d}ig)^{1/\gamma} \ \mathcal{T} < \gamma dig(rac{n}{d}ig)^{1/\gamma} \end{split}$
non-adaptive	$egin{aligned} & d \in \Theta(n^ heta), heta < 1 \ & \gamma \in \Thetaig((\log n)^cig), c < 1 \end{aligned}$	$egin{aligned} \mathcal{T} &> \gamma d^{rac{1}{\gamma}} (d-1)(1+o(1)) \ \mathcal{T} &< \gamma d \max \left\{ 2^{rac{1}{lpha_2} \mathcal{H}_2(\max\{lpha_2,rac{1}{2}\})} igg(rac{d}{eta_n}igg)^{rac{1}{lpha_2 \gamma}}, \ 2^{1/\gamma} igg(rac{n-d}{d}igg)^{rac{1}{\gamma}} igg(rac{d}{eta_n}igg)^{rac{1}{(1-lpha_2)\gamma^2}} ight\} \end{aligned}$

Table: Our results

メロト メタト メヨト メヨト