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Motivation

® Begin in 1943, where soldiers were tested for syphilis by drawing blood

® Robert Dorfman’s key insight: reduce number of tests by pooling

dh dh dh 48 48 4h 4 a8
| T T
® W ® 8 O
(discard) (discard) (found)
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Motivation

® Begin in 1943, where soldiers were tested for syphilis by drawing blood
® Robert Dorfman’s key insight: reduce number of tests by pooling
e Central problem:

» How many tests are required to accurately discover the infected soldiers?

» How can it be achieved?

da db da dh dh db dh A8
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Applications

® Medical testing: COVID-19, by pooling Ribonucleic acid (RNA) samples
[Yelin et al., 2020]
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Applications

® Medical testing: COVID-19, by pooling Ribonucleic acid (RNA) samples
[Yelin et al., 2020]
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® Some other applications:
> Biology

» Communications

» Data science
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Group Testing Setup

n
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® |n this talk:
> nitems labelled {1,..., n} that produces binary outcomes when tested

> Defective set D C {1, ..., n}, where d = |D| € o(n)

» Combinatorial prior: Defective set D ~ Uniform(]}) (i.e, d out of n items with
uniform prior)

> Noiseless testing: negative outcome = all items in pool are non-defective;
positive outcome = at least one item in pool is defective

> Distinction between adaptive and non-adaptive testing
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Recovery Criteria

® Error probability (exact recovery)
P. =P(D # D)

® We study conditions on number of tests T for P, — 0 as n — oo
» Information theoretic lower bound
» Minimum number of tests T for Pe — 0
» Upper bound from algorithm

» Maximum number of tests T our algorithm needs for Pe — 0
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Sparse Group Testing
Testing procedure is subjected to one of the following:
® |tems are finitely divisible and thus may participate in at most ~ tests

® Tests are size-constrained and thus contain no more than p items per test
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Sparse Group Testing
Testing procedure is subjected to one of the following:

® |tems are finitely divisible and thus may participate in at most ~ tests

® Tests are size-constrained and thus contain no more than p items per test
Example:

® Divisibility constraint: finite amount of blood per soldier

® Size constraint: limitations on volume capacity of the machine
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Sparse Group Testing

® Previous work in literature shows that v € ©(logn) and p € ©(%) are

required to attain the lower bound for the unconstrained setting
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Sparse Group Testing

® Previous work in literature shows that v € ©(logn) and p € ©(%) are

required to attain the lower bound for the unconstrained setting
® We are interested in:
> Divisibility constraint: v € o(log n)
> Size constraint: p € o(4)
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Previous Work on Non-Adaptive Setting

For some error probability P, = P(ﬁ #D)<e

Constraint type ‘

Scaling regime

Tests required

~-divisible items

deo(n’),<1
v € o(log n)

T > ~d(5) 7
T < [vd(1)""]

p-sized tests

deo(n?),o<1
peO((n/d)?).0 <1
e=n<(>0

T>(55);
T < [a=i=5 1141

Table: Previous results (non-adaptive setting)
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Previous Work on Non-Adaptive Setting

For some error probability P, = P(ﬁ #D)<e

Constraint type ‘

Scaling regime

Tests required

~-divisible items

deo(n’),<1
v € o(log n)

T > ~d(5) 7

p-sized tests

deo(n?),o<1
peO((n/d)?).0 <1
e=n<(>0

p
T < [y 11241

Table: Previous results (non-adaptive setting)
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Outline

@ Adaptive Setting for ~-Divisible Items

® Non-Adaptive Setting for «-Divisible Items

® Conclusion
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o Adaptive Setting for v-Divisible Items
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Lower Bound Result

Adaptive setting: test pools are designed sequentially, and each one can depend

on previous test outcomes.
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Lower Bound Result

Adaptive setting: test pools are designed sequentially, and each one can depend
on previous test outcomes.

Theorem: If d € o(n), v € o(log n), any non-adaptive or adaptive group testing
algorithm that tests each item at most «y times and has a probability of error of at

. 1
most € requires at least e~ (1+°(W)d(2) /7 tests.
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Lower Bound Result

Adaptive setting: test pools are designed sequentially, and each one can depend
on previous test outcomes.

Theorem: If d € o(n), v € o(log n), any non-adaptive or adaptive group testing
algorithm that tests each item at most 7 times and has a probability of error of at
most € requires at least e~(1+o(D)yq(2 ) tests.

Improvements: We have strengthened previous lower bound by
® Improving dependence on ¢, and

® Extending its validity to the adaptive setting.

Nelvin Tan (NUS) Sparse Group Testing: April 12, 2020 12/35



Lower Bound Result Interpretation

Theorem: We require at least e~ (1+°(M)~d ( )1/7 tests.

n
d
Interpretation:

D ~ Uniform(}))
KAkK . KAKL}on o)

+ r— ]. Entropy < 1
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Lower Bound Result Interpretation

Theorem: We require at least e~ (1+°(M)~d ( )1/7 tests.

n
d
Interpretation:

D ~ Uniform(}))
AL . KL For o)

+ r— ]. Entropy < 1

® If every test reveals 1 bit of entropy, we need log (/}) ~ d log (4) tests

® Since we require much more tests, our constraint results in tests to be less

informative
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Upper Bound Result and Algorithm

Claim: If d € o(n), v € o(log n), then there exists an adaptive group testing
algorithm that tests each item at most v times achieving P, = 0 using at most
T =~d(5)Y7 tests.
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Upper Bound Result and Algorithm

Claim: If d € o(n), v € o(log n), then there exists an adaptive group testing
algorithm that tests each item at most v times achieving P, = 0 using at most
T =~d(5)Y7 tests.

Improvements:

® |mproved previous bound: (5)1/7 = (5)1/7

® Matches the lower bound T > e*(”"(l))’yd(g)l/v up to a constant factor of
e—(1+o(1))
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Upper Bound Result and Algorithm

Claim: If d € o(n), v € o(log n), then there exists an adaptive group testing
algorithm that tests each item at most v times achieving P, = 0 using at most
T =~d(5)Y7 tests.

Improvements:

® |mproved previous bound: (g)l/”’ = (5)1/“/

® Matches the lower bound T > e~ (o)A d(
o—(1+0(1)

1
g) / up to a constant factor of

Key idea: Can we partition the items into equal groups of ideal sizes?

Nelvin Tan (NUS) Sparse Group Testing: April 12, 2020 14 /35



Adaptive Algorithm

[ ] stageo
" - "

G - ) stase

2
e Group sizes: M — M 7=1 s M 51 ... & 1
» n/M splits from stage O to stage 1

> MY =D splits between any two subsequent stages
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Adaptive Algorithm

[ ]StageO
O - ) s

( Jeool ) # groups = Myt Stage 2

1 2
® Group sizes: M —» M* 71 5 M7 ... 51
» n/M splits from stage O to stage 1

> M/ splits between any two subsequent stages
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Adaptive Algorithm Analysis

( ] St
M - M
[ ]

eoe [ ] Stage 1
‘ Test n/M groups
|

Less than d My=1 groups proceed to next stage

® From stage 1 to stage 2: we made n/M tests
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Adaptive Algorithm Analysis

1
Less than d My-1 groups
|

! 1
C 7 «ee (7 stage2omvads
1
‘ Test d My-t groups

( ]ooo[ ]-00[ | | J
!

Less than d M¥-1 groups proceed to next stage

® From stage 2 onward, between any two stages (total of v — 1): we made

1
dM~-T tests

® This givesus T < % 4 (v — 1)dM~.

® Optimizing the upper bound w.r.t. M and substituting back into the upper

bound, we get our result

April 12, 2020
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@ Non-Adaptive Setting for y-Divisible Items
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Non-adaptive Setting

® Tests can be designed in advance

® Goal: given test matrix X and outcomes y, estimate D

Tests »

| -

HEE EEE B EEN

Items

Outcomes
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Non-adaptive Setting

® Tests can be designed in advance

® Goal: given test matrix X and outcomes y, estimate D

Tests »

| -

HEE EEE B EEN

Items

Outcomes

® Narrower regimes:

> d € O(n?) for some sparsity parameter 6 € (0,1)
> ~ € ©((log n)) for some constant ¢ € [0,1)
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Lower Bound Result

Theorem: If d € ©(n?) and v € ©((log n)°), then any non-adaptive algorithm
that tests each item at most + times with tests T < yd'/7(d — 1)(1 + o(1)), has
P. bounded away from zero.
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Lower Bound Result

Theorem: If d € ©(n’) and v € ©((log n)°), then any non-adaptive algorithm
that tests each item at most + times with tests T < yd'/7(d — 1)(1 + o(1)), has
P. bounded away from zero.

Interpretation:
® Larger number of tests are required for some 6

® We compare our result T € Q(fyd . dl/'y) with previous result
a1
Teq(yd(3)")

3=

® To make the difference visible, we use the variable 7, where T = ’yd((g)%)

® Smaller n = larger T
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Lower Bound Result

Comparison: T € Q(vd - d'/7) [ours] vs. T € Q(vd(ﬁ)l/'y) [previous]

1.0

0.6

0.4

0.2

== Previous
—| = = Ours

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

0.0

Sparsity parameter 0
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Lower Bound Result

Comparison: T € Q(vd - d'/7) [ours] vs. T € Q(vd(ﬁ)l/'y) [previous]

1.0

0.8
|

0.6

0.4
.

0.2
.

== Previous ®
—| = = Ours

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

0.0

Sparsity parameter 0
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Lower Bound Result

Comparison: T € Q(vd - d'/7) [ours] vs. T € Q(vd(ﬁ)l/'y) [previous]

1.0

A )
)
L)

v Impossible
.

0.8
|

0.6

= Possible .

0.4
.

0.2
.

== Previous ®
—| = = Ours

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

0.0

Sparsity parameter 0
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Definite Defectives (DD) Algorithm

Some useful observations:
® Any item in a negative test is definitely non-defective (DA'D)
® All other items are considered (initially) as possibly defective (PD)

e |f a test contains only one item from PD, then it is definitely defective (DD)
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Definite Defectives (DD) Algorithm

Some useful observations:
® Any item in a negative test is definitely non-defective (DA'D)
® All other items are considered (initially) as possibly defective (PD)
® If a test contains only one item from PD, then it is definitely defective (DD)

Algorithm: Declare the set DD to be the positive and the rest negative

Nelvin Tan (NUS) Sparse Group Testing: April 12, 2020 25/35



Definite Defectives (DD) Algorithm

Some useful observations:
® Any item in a negative test is definitely non-defective (DA'D)
® All other items are considered (initially) as possibly defective (PD)
® If a test contains only one item from PD, then it is definitely defective (DD)

Algorithm: Declare the set DD to be the positive and the rest negative
Claim: If d € ©(n”), v € ©((log n)), constant a, € (0,1), and a decaying

function /3,, then we need at most

1 1 1
_ —H. (max{az,l})( d ) a2y l/w(" - d)?< d ) (1—az)7? }
T =~vydmax{ 227 20— ,2 - - il 7
! { Bn d )\,

to recover D with vanishing error probability.
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Definitions

Two Definitions:
® We say that item / is masked by set L if every test that includes /, also
includes > 1 item(s) from £

® Number of collisions between item i and set L refers to the #tests that

I
L

Nelvin Tan (NUS) Sparse Group Testing: April 12, 2020

include /, and also include > 1 item(s) from £

Example:

- 4 is masked by I <
- #Collisions between 7 and L is y

0]

T
(
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Very Brief Analysis — Main ldeas

Observation: for DD = D, every defective item i must not be masked by
PD\ {i}.
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Very Brief Analysis — Main ldeas

Observation: for DD = D, every defective item i must not be masked by
PD\ {i}.
Idea: split PD \ {i} into two sets D\ {i} (defective items) & PD\ D

(non-defective items) and consider two error events:
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Very Brief Analysis — Main ldeas

Observation: for DD = D, every defective item i must not be masked by

PD\ {i}.

Idea: split PD\ {i} into two sets D\ {i} (defective items) & PD \ D
(non-defective items) and consider two error events:

® Event 1: #collisions between i € D and D\ {i} is “close to 7"

i D\ {i}
rlw l—lﬁ
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Very Brief Analysis — Main ldeas

® Event 2|-Eventl: every test that includes i as the only defective item,
contains > 1 item from PD\ D

i

&

D\{i}
|

PD\ D
|

I 1

o]
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Very Brief Analysis — Main ldeas

® Event 2|-Eventl: every test that includes i as the only defective item,
contains > 1 item from PD\ D

i

&

D\{i}
|

PD\ D
|

I 1

o]

> For each error event, upper bound error probability by £,

» Obtain bound on T from both events = Take the max
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Interpretation of Results

Result:
T d {21H2(max{a2 %})( d)%ﬂ 21/'y<n—d)%( d)(l—al2)'yz}
= ~vd max < 22 i — , —_— —
! B d ) \B,
We can simplify the result under two scaling regimes where (3, scales
logarithmically in n.
* Large y: v € ©((log n)°) for some ¢ € (0,1)
» Assume that ap =~ 1
> T = EZ('yd max{n?, nl_g}l/v)
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Interpretation of Results

Result:
1 1
_ iH(max{az,l})(d)Tw 1/ (n—d)?(d)u
T =~vydmax{2a? 20— St —— il
! { 8, d )\
We can simplify the result under two scaling regimes where (3, scales
logarithmically in n.
* Large y: v € ©((log n)°) for some ¢ € (0,1)
» Assume that ap =~ 1
> T = EZ('yd max{n’, nl_g}l/v)
e Constant v: v € O(1)
= £ 1y
> T = Q(fyd max {na2'y , no27 T (1—az)4?) } )

» We can numerically optimize > to obtain a plot
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Interpretation of Results

® Large v: T = fZ(’yd max{n?, n1*9}1/7) vs. T = f~2(7dn1/7)
® Constant v: T = Q(fyd max{nﬂﬂ n‘*2”+(1 2% } /7) vs. T = Q(,del/w)

Large v: v € ©((log n)°)

e
-

0.8

04 06

0.2

0.0

- == COMP

Constant 7: v € O(1)

= = Converse

04 06 08 10

0.2

.
0.0

T T T
0.0 0.2 0.4

Sparsity parameter 0
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- == COMP

= = Converse

T T T
0.0 0.2 0.4

0.6

Sparsity parameter 0
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Interpretation of Results

® Large v: T = fZ(’yd max{n?, n1*9}1/7) vs. T = f~2(7dn1/7)
® Constant v: T = Q(*yd max{nﬂw n‘*2”+(1 2% } /7) vs. T = Q(,del/w)

Large v: v € ©((log n)°) Constant : v € O(1)

o | [ e ——"

o _| «©

o o

© | © |

o o

= =

~ ~

o o

N | N

o o
= = Converse = = Converse
- DD - DD

2 {— cowmp 2 {— CowmP
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Sparsity parameter 0 Sparsity parameter 6
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Interpretation of Results

® Large v: T = fZ(’yd max{n?, n1*9}1/7) vs. T = f~2(7dn1/7)
® Constant v: T = Q(fyd max{nﬂﬂ n‘*2”+(1 2% } /7) vs. T = Q(,del/w)

Large v: v € ©((log n)°) Constant : v € O(1)

o | [ e ——"

o _| «©

o o

© | © |

o o

= =

~ ~

o o

N | N

o o
= = Converse = = Converse
- DD - DD

2 {— cowmp 2 {— CowmP
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Sparsity parameter 0 Sparsity parameter 6
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Recap

We focused on:
® ~-divisible items constraints

® Both the adaptive and non-adaptive settings
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Recap

We focused on:

® ~-divisible items constraints

® Both the adaptive and non-adaptive settings
Returning to the central problem:

® How many tests are required? Provided lower bounds

® How can it be achieved? Provided algorithms and their upper bounds
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Overview of Results

| Scaling regime | Tests required
g de O(n) T> e_(1+o(1))’yd(§)1/7
Bl yco(logn) <z
® ~vd — o0 T9\d
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Overview of Results

Scaling regime ‘ Tests required
d € o(n)

v € o(log n)
~yd — o0

T> e_(”"(l))vd(g)lm
T <~d(2)"”

T > yd~ (d—=1)(1+0(1))

d S e(n0)70 < 1 asz(max{a2,2}) d
e i M(f) |
d

Table: Our results

non-adaptive | adaptive
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